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ABSTRACT

In this paper we show that risk associated with leverage is fundamentally relative to an arbitrary
choice of reference asset or portfolio. We characterize leverage risk as a drawdown risk measure
relative to the chosen reference asset. We further prove that the growth optimal Kelly portfolio is the
only portfolio for which the relative drawdown risk is not dependent on the choice of the reference
asset. Additionally, we show how to translate an investor’s viewpoint from one choice of reference
asset to another and establish conditions for when two investors can be said to face identical leverage
risk. We also prove that, for a given reference asset, the correlation between two arbitrary portfolios
with identical leverage risk equals the ratio of their Sharpe ratios if and only if the leverage risk is
consistently traded. More surprisingly, we observe that leverage applied to the growth optimal Kelly
strategy affects the drawdown risk in much the same way as the speed of light affects velocities in
Einstein’s theory of special relativity. Finally, we provide details on how to trade in order to beat an
arbitrary index for a given leverage risk target.

Keywords Leverage · Drawdown risk · Generalized Kelly strategy · Numéraire invariance · Risk relativity

1 Introduction

In the classical one-period mean-variance model of Markowitz [15] the portfolio allocation is fully described by the
expected return and the volatility of the portfolio. When a risk-free asset is available for investment the efficient frontier
consists of those trading strategies for which the Sharpe ratio is maximal. Hence, for such trading strategies there is
a linear relationship between the expected excess return and the volatility. Any point on the efficient frontier can be
reached by appropriately leveraging the position. This follows since, given a particular mean-variance efficient portfolio,
we can construct a new allocation along the efficient frontier by simply borrowing money and investing the surplus in
the existing mean-variance efficient portfolio. The larger the short position taken in the risk-free asset, the larger the
expected return of the new mean-variance efficient portfolio and the larger the volatility.

While the ability to leverage provides flexibility to the market it has the tendency to generate volatile positions. Over the
last two decades there has been an amplification in the usage of leverage inducing non-neglectable stress to the overall
financial system. This has lead a number of researchers to pay close attention to borrowing and leverage constraints, see
e.g. [4, 9, 23], in order to asses the particular risks associated with too high leverage such as: cost of margin calls, forced
liquidation, losses exceeding invested capital and ultimately the risk of bankruptcy. However, the general understanding
of investors attitude towards leverage is rather limited and there is a lack of consensus in how to measure this particular
risk. For instance, it may seem reasonable to argue that given two portfolios, with equal expected return and volatility, a
rational investor would prefer the portfolio with the lower leverage exposure. By adopting such an axiom Jacobs and
Levy [7, 8] augmented the utility function of the associated mean-variance formulation with a specific term designed
to capture the investor’s leverage aversion. The authors showed that the introduction of a leverage aversion term (in
addition to the more standard risk aversion term) resulted in lower levels of leverage than what was seen in the original
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mean-variance framework where individuals are assumed to have no aversion to leverage. Markowitz [17] replied to
the criticism raised by Jacobs and Levy stating that while the original mean-variance framework in [15] largely ignore
leverage risk the extended portfolio optimization framework in [16] has the potential to be modified such as to address
these specific topics. It is our view, however, that none of the approaches mentioned above manage to fully explain
the intrinsic nature of leverage. In general, we argue that it is questionable to associate leverage with utility and, in
particular, we stress that there is no real justification in blindly believing that an investor would prefer lower leverage to
higher for a given level of expected return or variance. As pointed out by Asness et al. [2], an investor can increase his
expected return in two ways: either by applying leverage or by concentrating the portfolio allocation to high-risk assets.
Each approach typically generates increased volatility but also delivers very different risk profiles. The point made in
[2] is that leverage risk is easier than concentration risk to manage. The authors further propose a two-step allocation
approach: first find the best unleveraged allocation according to some risk related criteria and second apply leverage to
this portfolio to meet the desired expected return. Hence, the approach of Asness et al. is very different from that of
Levy and Jacobs when addressing the risk associated with leverage.

In this paper we aim to analyze the nature of leverage and the associated risk in greater details. In order to do so we
first claim that it is necessary to consider a multi-period portfolio optimization framework as opposed to the classical
one-period framework. The reason being that we cannot simply superposition one-period optimal allocations if there is
a positive probability of the losses exceeding the initial capital within each period. In other words, we implicitly assume
that bankruptcy is an absorbing state in the sense that once an investor goes bankrupt he stays bankrupt. To facilitate
the reading we present our results in a continuous-time framework since this allows us to more easily deal with the
notion of bankruptcy via the concept of drawdown risk. Key to our result is the standpoint that risk in general, and
drawdown risk in particular, is always relative to a chosen reference asset or portfolio. Inspired by [24], we introduce a
simple yet powerful definition of relative drawdown aversion as being proportional to the logarithmic portfolio return
in excess of the reference asset divided by the portfolio variance. We argue that this definition captures the essential
properties associated with aversion to leverage. First, an investor who chooses not to invest in risky assets has maximal
relative drawdown aversion. Second, when applying leverage to an existing portfolio the relative drawdown aversion
decreases. The interpretation is that only investors with low relative drawdown aversion will apply high leverage. Third,
when sufficiently high leverage is applied to an existing portfolio the relative drawdown aversion becomes negative
indicating that the investor is leverage loving rather than leverage averse. Having quantified the notion of drawdown
aversion we thereafter define the concept of relative drawdown risk as the reciprocal of the relative drawdown aversion.
While our definition of relative drawdown risk shares many of the properties of a financial coherent or convex risk
measure [1, 6], it is fundamentally different in the sense that it is not expressed in currency units. Instead it behaves
more like a unitless index from which the expected maximal drawdown and the corresponding probability distribution
can easily be calculated. Hence, we obtain a powerful parameterization of the leverage risk without having to adopt a
utility representation of the investors.

Our main contribution is to build a comprehensive framework that allows an investor to analyze leverage risk for
arbitrary trading strategies and for arbitrary reference assets (or portfolios). The objective for doing so is to answer the
outstanding question: how to beat an index. The framework relies on two fundamental extensions of the Kelly theory
that dates back to Kelly [11] and Latané [12]. First, and foremost, we allow for an arbitrary reference asset. We show
that the growth optimal Kelly strategy is the only trading strategy for which the relative drawdown risk is not dependent
on the choice of the reference asset. This observation supports the claim in [20] that the growth optimal Kelly portfolio
can be used as numéraire together with the real-world probability measure for actuarial and derivative pricing. Second,
we present a Kelly-like theory for arbitrary trading strategies. This allows us to identify trading strategies with similar
relative drawdown risk. It also allows us to translate an investor’s viewpoint from one choice of reference asset to
another. There are many additional aspects which can easily be studied within the framework. For instance, we show
that, for a given reference asset, the correlation between two arbitrary portfolios with identical relative drawdown risk
equals the ratio of their Sharpe ratios if and only if the relative drawdown risk is traded consistently. This observation
supports a claim in [3] where such a result is derived, albeit through very different methods, as a trading equilibrium.
More amusingly, we find that leverage applied to the growth optimal Kelly strategy affects the relative drawdown risk in
much the same way as the speed of light affects velocities in Einstein’s theory of special relativity. Finally, we show
that an investor trying to beat an index should always invest a fraction of his wealth in the growth optimal Kelly strategy
and the remaining wealth in the index. The particular fraction chosen to invest in the growth optimal Kelly strategy
depends on the drawdown risk relative to the index that the investor targets. The fact that such a simple linear trading
rule is locally efficient is quite remarkable.
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2 Aversion and Risk of Drawdowns

Two of the key metrics in measuring the performance of a fund manager are the realized Sharpe ratio and the drawdown.
In this section we attempt to quantify the notions of drawdown aversion and drawdown risk. We take the approach that
a fund manager wants the ability to allocate funds in such a way as to keep these terms constant over time, in which
case they should provide easily accessible representation of the drawdown risk intrinsic to the portfolio. Thereafter, we
generalize the concepts of drawdown aversion and drawdown risk by allowing the fund manager to incorporate local
beliefs into his trading strategy.

We consider a capital market consisting of a number of primary assets (P0, P1, . . . , PN ) expressed in some common
numéraire unit, say dollar. An asset related to a dividend paying stock is seen as a fund with the dividends re-invested.
All assets are assumed to be positive adapted continuous processes living on a filtered probability space (Ω,F ,F,P),
where F = {F(t) : t ≥ 0} is a right-continuous increasing family of σ-algebras such that F(0) contains all the P-null
sets of F . As usual we think of the filtration F as the carrier of information. We further let P0 be the numéraire asset of
the economy, describing how the value of the numéraire unit changes over time. The rate of logarithmic return for each
risky asset is denoted by

μn(t) = lim
ε→0

1

ε
E

[
log

Pn(t+ ε)

Pn(t)
|F(t)

]
, n = 1, . . . , N, (1)

while we let r0 denote the rate of logarithmic return for the numéraire asset. In order to remove the dependency on
the numéraire unit we introduce the relative prices P0|n = Pn/P0 and the corresponding normalized capital market

(1, P0|1, . . . , P0|N ) such that the numéraire asset can be regarded as the risk-free asset in the normalized economy.
Alternatively, we can view P0 as the new numéraire unit of the original capital market. In either case

μ0|n(t) = μn(t)− r0(t), n = 1, . . . , N, (2)

equals the rate of logarithmic return corresponding to P0|n. We also introduce the instantaneous covariance matrix of
the numéraire based assets

V0|n,m(t) = lim
ε→0

1

ε
C

[
log

P0|n(t+ ε)

P0|n(t)
, log

P0|m(t+ ε)

P0|m(t)
|F(t)

]
, n,m = 1, . . . , N, (3)

and note that this matrix can conveniently be expressed in terms of the quadratic covariation process, see [10], according
to

V0|n,m(t) =
d

dt
[logP0|n, logP0|m](t), n,m = 1, . . . , N. (4)

For the purpose of this paper we always assume that V0 is an a.s. positive definite matrix. A standard result in linear
algebra then states that V0 generates an inner product of the form 〈u, v〉V0

= u′V0v. To facilitate the reading we further
introduce the short-hand notation

σ2
0|n(t) = V0|n,n(t), n = 1, . . . , N, (5)

when referencing the instantaneous variance of the individual numéraire based assets.

Remark 2.1. In many applications the numéraire process is assumed to be locally risk-free in the sense that

d logP0(t) = r0(t)dt.

In this case it is custom to identify r0 with a continuously compounded interest rate process r such that the numéraire
can be interpreted as a bank account. We also note that when the numéraire process is locally risk-free the instantaneous
asset-asset covariance matrix V0 is independent of P0. This motivates us to simply write V and σ when dealing with
examples for which this assumption is explicitly made.

From time to time, we also make references to the instantaneous rate of return vector process b0 = (b0|1, . . . , b0|n)′,
defined by

b0|n(t) = lim
ε→0

1

ε
E

[
P0|n(t+ ε)− P0|n(t)

P0|n(t)
|F(t)

]
, n = 1, . . . , N. (6)

A straightforward application of Itô’s lemma then verifies that the rate of return relates to the rate of logarithmic return
according to

b0|n(t) = μ0|n(t) +
1

2
σ2
0|n(t), n = 1, . . . , N. (7)

An investor can trade in the assets and throughout this paper we assume that there are no transaction fees, that short-
selling is allowed, that trading takes place continuously in time, and that the investor’s trading activity does not impact

3



A PREPRINT - JANUARY 25, 2021

the asset prices. We define a trading strategy as an F-predictable vector process w = (w1, . . . , wN )
′
, representing the

proportion of wealth invested in each asset, and let Xw denote the corresponding portfolio. In order to analyze the
performance of the numéraire based wealth process X0|w = Xw/P0 we impose the restriction that, when re-balancing
the portfolio, money can neither be injected nor withdrawn. Such trading strategies are said to be self-financing and
satisfy

dX0|w(t)
X0|w(t)

=
N∑

n=1

wn(t)
dP0|n(t)
P0|n(t)

. (8)

It now follows, via Itô’s lemma, that if the numéraire based portfolio is almost everywhere positive the logarithmic
value evolves according to

d logX0|w(t) =
N∑

n=1

wn(t)

(
d logP0|n(t) +

1

2
σ2
0|n(t)dt

)
− 1

2
σ2
0|w(t)dt, (9)

where the volatility σ0|w of the numéraire based portfolio satisfies

σ2
0|w(t) = V0|w,w(t), V0|u,w(t) =

d

dt
[logX0|u, logX0|w](t) = 〈u,w〉V0

(t). (10)

We further observe that the instantaneous rate of logarithmic return of the numéraire based portfolio takes the form

μ0|w(t) =
N∑

n=1

wn(t)

(
μ0|n(t) +

1

2
σ2
0|n(t)

)
− 1

2
σ2
0|w(t). (11)

Having locally characterized the investor’s portfolio we proceed by examining the annualized rate of logarithmic return
(or yield for short) that an investor can achieve using trading strategies for which the portfolio process is positive almost
everywhere. Since, all the assets in the capital market are assumed to be continuous processes it follows from the
martingale representation theorem [10] that the yield y0|w can be expressed as

y0|w(T ) =
1

T
log

X0|w(T )
X0|w (0)

=
1

T

∫ T

0

μ0|w(t)dt+
1

T

∫ T

0

σ0|w(t)dW (t), (12)

for some Brownian motion W . By further introducing the time averages

μ̄0|w(T ) =
1

T

∫ T

0

μ0|w(t)dt, σ̄2
0|w(T ) =

1

T

∫ T

0

σ2
0|w(t)dt, (13)

the first two moments related to the yield takes the form

E[y0|w(T )− μ̄0|w(T )] = 0, V[y0|w(T )− μ̄0|w(T )] =
1

T
E[σ̄2

0|w(T )]. (14)

Hence, for short time horizons, T , the yield fluctuates heavily around the time average μ̄0|w, while for long time
horizons these fluctuations have only marginal impact. Consequently, one sees that any notion of risk will always be
strongly dependent on the investment horizon T . Below we include a more precise result for the long term performance
of the investor’s portfolio.

Proposition 2.2. Let w be a trading strategy such that X0|w ≥ 0 and suppose that the time averages μ̄0|w and σ̄2
0|w

are well defined in the sense that

lim
T→∞

μ̄0|w(T ) < ∞, lim
T→∞

σ̄2
0|w(T ) < ∞, a.s.

If, in addition, limT→∞ T σ̄2
0|w(T ) = ∞ a.s. then

lim
T→∞

(
y0|w(T )− μ̄0|w(T )

)
= 0 a.s.

Proof. The proof follows from the strong law of large numbers for continuous local martingales, see [13, Section 2.6].
That is, if we set

M(t) =

∫ t

0

σ0|w(s)dW (s), [M,M ](t) =

∫ t

0

σ2
0|w(s)ds,

we have M/[M,M ] → 0 if [M,M ] → ∞ a.s., when t → ∞. Finally, since

y0|w(t) = μ̄0|w(t) + σ̄2
0|w(t)

M(t)

[M,M ](t)
,

the proof concludes.
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It is important to understand that the long term performance of any trading strategy is ultimately determined by the time
average of the instantaneous rate of logarithmic return μ0|w. Consequently, for long investment horizons it is wrong to
believe, as in Markowitz’s mean-variance framework, that the realized portfolio return can be explained by its expected
value. This is particularly true, as pointed out in [3], for high levels of leverage in which case the expected logarithmic
return can deviate substantially from the logarithm of the expected return. Below, we show that in the long run the
realized logarithmic portfolio return of any buy-hold strategy is bounded from above independently of the leverage
applied.

Corollary 2.3. Let w be a buy-hold strategy in some, or all, of the primary assets. For these assets, characterized by
the set NN = {0 ≤ n ≤ N |wn(0) �= 0} where w0 = 1−∑

n≥1 wn, we assume that their time averages μ̄0|n and σ̄2
0|n

are well defined in the sense that

lim
T→∞

μ̄0|n(T ) < ∞, lim
T→∞

σ̄2
0|n(T ) < ∞, a.s.

If, in addition, limT→∞ T σ̄2
0|n(T ) = ∞ a.s., for 1 ≤ n ∈ NN , then

lim
T→∞

(
1

T
log

∣∣∣∣X0|w(T )
X0|w(0)

∣∣∣∣− max
n∈NN

μ0|n(T )
)

≤ 0, a.s.

Proof. For buy-hold strategies the number of units held in each asset qn = wnX0|w/P0|n is constant through time.
This implies that

wn(t) = wn(0)
X0|w(0)
X0|w(t)

P0|n(t)
P0|n(0)

,

with

X0|w(T )
X0|w(0)

= w0(0) +

N∑
n=1

wn(0)
P0|n(T )
P0|n(0)

, w0(0) = 1−
N∑

n=1

wn(0).

It then follows from Hölders inequality, applied to the Lp-norm, that

∣∣∣∣X0|w(T )
X0|w(0)

∣∣∣∣
1
T

≤
(
|w0(0)|+

N∑
n=1

|wn(0)|
P0|n(T )
P0|n(0)

) 1
T

≤ (N + 1)
1
T max

n∈NN

((
|wn(0)|

P0|n(T )
P0|n(0)

) 1
T

)
.

The proof concludes along the lines of the proof of Proposition 2.2.

Hence, it is the ability to dynamically trade the primary assets that allows for potential long term excessive growth and
not simply the ability to leverage. However, the interesting aspect occurs when these two features are combined. In
order to analyze the effect of leverage in this case we apply Eqs. (10) and (11) to obtain

μ0|kw(t) = kμ0|w(t)− k (k − 1)
1

2
σ2
0|w(t), σ2

0|kw(t) = k2σ2
0|w(t), k ∈ R. (15)

This shows that when an investor leverages a dynamic trading strategy w, by scaling up the positions with a factor k > 1,
there are two opposing forces. On the one hand, the instantaneous rate of logarithmic return increases linearly with the
leverage applied. On the other hand, the new position is more volatile which quadraticly reduces the instantaneous
rate of logarithmic return. Whichever of these forces that dominate depends on the level of leverage and the local
characteristic of the initial position. What makes this observation somewhat counter intuitive is the fact that the
instantaneous rate of return

b0|w(t) = μ0|w(t) +
1

2
σ2
0|w(t) =

N∑
n=1

wn(t)b0|n(t). (16)

scales linearly with the level of leverage; that is b0|kw = kb0|w. In fact, this is where Markowitz’s mean-variance model
fails: for large leverage levels the mean-variance model must retain the expected return at the expense of an increasing
probability to loose arbitrary large amounts of money. As a result, the long term realized portfolio return can be several
orders of magnitude smaller than the targeted expected return. This leads us to analyze the drawdowns in greater detail.

Definition 2.4. For every F-predictable trading strategy w we define the instantaneous relative drawdown aversion by
the process

A0|w(t) = 2
μ0|w(t)
σ2
0|w(t)

.
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The implications of the above definition can best be appreciated by studying how leverage impacts the relative drawdown
aversion. By the use of Eqs. (15) and (16) we obtain

A0|kw(t) =
A0|w(t) + 1− k

k
=

2

k

b0|w(t)
σ2
0|w(t)

− 1, k ∈ R. (17)

Hence, given that the instantaneous numéraire based rate of return b0|w is positive it follows that an investor who
chooses not to invest in the risky assets has maximal relative drawdown aversion. We also see that in this case the
relative drawdown aversion is strictly decreasing with respect to the leverage. The explanation is that only those
investors with sufficiently low relative drawdown aversion will choose to apply high leverage. However, as the leverage
increases the relative drawdown aversion eventually becomes negative. We say that investors taking on such trading
strategies are leverage loving as opposed to leverage averse. Hence, the maximal leverage a leverage averse investor
can apply to a given trading strategy w equals k = A0|w + 1. Any attempt to leverage beyond this level will make the
investor leverage loving instead of leverage averse. Below, we examine in further details the class of trading strategies
for which the relative drawdown aversion is held constant.

Proposition 2.5. Given an F-predictable trading strategy w with a.s. constant relative drawdown aversion A0|w = A.
Assume further that the volatility is a.s. uniformly bounded and that limT→∞ T σ̄2

0|w(T ) = ∞, with probability one. If
we define the stopping time

τ0|a,b = inf{t ≥ 0 : X0|w(t)/X0|w(0) /∈ (a, b)}, 0 < a < 1 < b < ∞,

then τ0|a,b < ∞ a.s. with

P

(
X0|w(τ0|a,b)
X0|w(0)

= a

)
=

1− b−A

a−A − b−A
= 1− P

(
X0|w(τ0|a,b)
X0|w(0)

= b

)
,

E[τ0|a,bσ̄2
0|w(τ0|a,b)] =

2

A

(
log b− 1− b−A

a−A − b−A
log

b

a

)
.

For the limit cases it follows that τ0|0,∞ = ∞ a.s. with

P(τ0|0,b < ∞)
∣∣
A≥0

= P(τ0|a,∞ < ∞)
∣∣
A≤0

= 1.

Proof. The proof is provided in Appendix.

The result above shows that a trading strategy holding the relative drawdown aversion constant is non-exploding and,
consequently, avoids bankruptcy in finite time. However, such strategies will reach any upper (lower) target level
in finite time if the relative drawdown aversion is less (greater) or equal than zero. This observation justifies the
nomenclature of drawdown averse versus drawdown loving investors depending on the sign of the relative drawdown
aversion process. In fact, we can make the connection more precise if we consider boundaries of the particular form
(1/b, b), b > 1. In this case, the probabilities in Proposition 2.5 of losses (hitting the lower barrier before the upper
barrier) and gains (hitting the upper barrier before the lower barrier) simplify to

Ploss (b;A) = P(X0|w(τ0|b−1,b) = X0|w(0)b−1) =
1

bA + 1
, (18)

Pgain(b;A) = P(X0|w(τ0|b−1,b) = X0|w(0)b) = Ploss(b;−A). (19)

Hence, if A is a drawdown averse coefficient then −A represents a drawdown loving coefficient. Note further that for a
constant relative drawdown averse trading strategy these probabilities are orthogonal to the financial market in the sense
that they do not explicitly depend on the portfolio characteristics (μ0|w, σ0|w). Consequently, we can view them as
representing drawdown risk/chance rather than financial risk/chance.

Corollary 2.6. Let the assumptions of Proposition 2.5 hold true and set R = 1/A. Then, for n ≥ 0, we have

P

(
inf

0≤t<∞
log

X0|w(t)
X0|w(0)

≤ −nR

)∣∣∣∣
R>0

= P

(
sup

0≤t<∞
log

X0|w(t)
X0|w(0)

≥ −nR

)∣∣∣∣
R<0

= e−n,

E

[
inf

0≤t<∞
log

X0|w(t)
X0|w(0)

]∣∣∣∣
R>0

= E

[
sup

0≤t<∞
log

X0|w(t)
X0|w(0)

]∣∣∣∣
R<0

= −R.
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Proof. Given the probabilities the expected values follow from straightforward calculations and is thus omitted.
Furthermore, since the maximum loss set can be expressed according to

{ inf
0≤t<∞

X0|w(t) ≤ kX0|w(0)} = { inf
0≤t<τ0|0,∞

X0|w(t) ≤ kX0|w(0)} = { inf
0≤t<τ0|k,∞

X0|w(t) ≤ kX0|w(0)},

we see that

P

(
inf

0≤t<∞
X0|w(t) ≤ kX0|w(0)

)
= P

(
X0|w(τ0|k,∞) = kX0|w(0)

)
.

The proof concludes by repeating the calculations for the maximum gain set and thereafter applying the results of
Proposition 2.5.

For a constant relative drawdown aversion strategy the term R = 1/A not only captures the expected maximum relative
losses (gains) an investor can face, it also allows us to express the corresponding drawdown probability distributions in
a highly simple fashion. This motivates us to quantify the associated relative drawdown risk as below.

Definition 2.7. For every F-predictable trading strategy w we define the instantaneous relative drawdown risk by the
process

R0|w(t) =
1

2

σ2
0|w(t)

μ0|w(t)
=

1

A0|w(t)
.

Similar to the relative drawdown aversion process we apply leverage to gain further insights about the properties of the
relative drawdown risk process. Hence, given a trading strategy w it follows from Eq. (17) that the relative drawdown
risk is maximal (R0|kw = ∞) when the leverage k = A0|w + 1 is applied. Beyond this maximal leverage level the
relative drawdown risk process changes sign indicating that the investor becomes leverage loving and thus value upside
chance more than downside risk. We further show that the map k 
→ R0|kw is normalized, monotonically increasing
and convex over the interval where the investor is leverage averse.

Proposition 2.8. Given a trading strategy w for which the instantaneous return b0|w is a.s. strictly positive. Let further
k1 and k2 be real-valued F-predictable process such that 0 < k1, k2 < A0|w + 1. Then

lim
k1→0

R0|k1w(t) = 0,

k1(t) < k2(t) ⇒ R0|k1w(t) < R0|k2w(t),

R0|λk1w+(1−λ)k2w(t) < λR0|k1w(t) + (1− λ)R0|k2w(t), λ ∈ [0, 1].

Proof. It follows from Eq. (17) that both the first and the second derivative of R0|kw, with respect to k, are strictly

positive over the interval k ∈ (0, A0|w + 1). This completes the proof.

Although the relative drawdown risk process share similarities with coherent and convex risk measures, see [1, 6], it is
important to stress that our approach is not part of the axiomatic financial risk measure theory. In particular, we do
not allow for risk reduction by adding cash to the trading strategy. Instead, we simply attempt to associate a notion of
leverage risk with the aversion to leverage typically seen among investors. In order to better understand our notion of
relative drawdown risk let us recall that financial risk is, in practise, always measured with respect to a particular date in
the future. For instance, the quintessential Value-at-Risk (VaR) describes the maximum loss an investor can face, at a
future date, when a given percentage of the worst possible outcomes are ignored

VaRδ(T ) = argmin
y∈R

P(X0|w(0)−X0|w(T ) > y) ≤ 1− δ. (20)

In practise δ is often set to 95% or 99%, while the risk horizon T varies from one day, to ten days, to up to one year
depending on the specific application. Often several risk horizons are used simultaneously in order to accurately report
the financial risk of an investment and often each VaR number is associated with a high degree of model uncertainty.
The reasons being that: first, VaR numbers are not easily comparable across risk horizons and secondly, the loss
probability can only be calculated analytically in a few very particular cases; for instance when the volatility of the
portfolio is held constant and a constant relative drawdown aversion strategy is employed. We avoid (some of) these
problems by specifying the risk event with a discretization in space rather than in time. In doing so, the probabilities
associated with the risk events do not explicitly depend on the portfolio characteristics when a trading strategy with
constant relative drawdown aversion, A = 1/R, is employed. For such trading strategies, a minor modification of the
VaR measure yields

X0|w(0)(1− (1− δ)
R
) = argmin

y∈R

P

(
X0|w(0)− inf

0≤t<∞
X0|w(t) > y

)∣∣∣∣
R>0

≤ 1− δ. (21)

7



A PREPRINT - JANUARY 25, 2021

The above formula, derived using Corollary 2.6, highlights yet another difference between a financial risk measure and
our proposed instantaneous relative drawdown risk process; namely that while the range of a financial risk measure
corresponds to the numéraire based potential losses the relative drawdown risk behaves more like a unitless index.

3 Kelly Strategies and Leverage

In this section we extend our analysis to include the second key metric of a fund manager; that is the Sharpe ratio. In
particular, we examine the draw down aversion from a Kelly trader’s perspective. When the numéraire is identified

with a locally risk free bank account the trading strategy w∗ = V −1
0 b0 is known as the growth optimal Kelly strategy.

Bermin and Holm [3] show that such a trading strategy has a maximal instantaneous Sharpe ratio in the sense of [19].
In order to extend their results to a market with a general numéraire process we notice that the Sharpe ratio, as initially
introduced in [21] and subsequently in [22], gives little advice on how to deal with a general numéraire asset. We
proceed by noting that the instantaneous portfolio characteristics can be expressed in terms of the numéraire based
return according to

b0|w(t) = lim
ε→0

1

ε
E

[
X0|w(t+ ε)−X0|w(t)

X0|w(t)
|F(t)

]
, (22)

σ2
0|w(t) = lim

ε→0

1

ε
V

[
X0|w(t+ ε)−X0|w(t)

X0|w(t)
|F(t)

]
. (23)

These observations motivate the extension below.

Definition 3.1. Given a capital market with an arbitrary numéraire asset P0. For every F-predictable trading strategy w
we define the instantaneous Sharpe ratio according to

s0|w(t) =
b0|w(t)
σ0|w(t)

.

One notes that when the numéraire asset can be identified with a bank account, as in Eq. (2.1), our definition of
instantaneous Sharpe ratio corresponds to that of [19].

Theorem 3.2 (Kelly). Any F-predictable trading strategy w that maximizes the magnitude of the instantaneous Sharpe
ratio s0|w is of the form

w(t) = k(t)w∗(t), w∗(t) = V −1
0 (t)b0(t) = argmax

w
μ0|w(t),

for some real-valued F-predictable process k. We call such strategies Kelly strategies and we refer to the process k as
the Kelly multiplier. The instantaneous squared Sharpe ratio of a Kelly strategy is independent of k and satisfies

s20|w(t) = s20|w∗(t) = 〈b0, b0〉V −1
0

(t).

The corresponding logarithmic return and volatility of such a strategy satisfy

μ0|w(t) =
1

2
k(t) (2− k(t)) s20|w∗(t), σ2

0|w(t) = k2(t)s20|w∗(t),

such that μ0|w is maximal for k = 1. We call w∗ the growth optimal Kelly strategy.

Proof. Let us first observe that, with w∗ = V 1
0 b0, the rate of return process b0|w can be expressed according to

b0|w(t) = w′(t)b0(t) = 〈w,w∗〉V0
(t).

Hence, the instantaneous Sharpe ratio takes the form

s0|w(t) =
b0|w(t)
σ0|w(t)

=
〈w,w∗〉V0

(t)√〈w,w〉V0
(t)

.

It now follows from the Cauchy-Schwartz’s inequality that s20|w ≤ 〈w∗, w∗〉V0
= s20|w∗ with equality if and only if w

and w∗ are collinear. The local characteristics of such a trading strategy w = kw∗ can easily be computed and is thus
omitted. For an arbitrary trading strategy, however, it follows that

μ0|w(t) = b0|w(t)− 1

2
σ2
0|w(t) = 〈w,w∗〉V0

(t)− 1

2
〈w,w〉V0

(t).

The first order condition, with respect to w, then gives us V0(w
∗ − w) = 0. Hence, argmaxw μ0|w = w∗ since V0 is

invertible.
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In order to build confidence in the Kelly approach we compare the historical realised level curves of the yield y0|w
with those of the estimated time average μ̄0|w as outlined in Proposition 2.2. In Fig. 1 we plot the yield of various
constant trading strategies w for the the total return index (dividends re-invested) of S&P500 and for gold, using Eq.
(8) with daily re-balancing over the last 15 years. We also estimate constant model parameters over this time period
from which we derive an estimate of μ̄0|w. This shows that approximately 4000 data points can, to first order, be
accurately explained by a model of six parameters only. The second order effects are mainly two: first we notice that
daily re-balancing is not frequent enough for highly leveraged trading strategies and secondly, we believe that additional
accuracy can likely be obtained by allowing the model parameters to fluctuate around the constant means within the
period. Additionally, we remind the reader that the theoretical level curves of μ̄0|w are based on in-sample estimates,
where only the first and last data points are effectively used to estimate the logarithmic sample returns μ1, μ2 and r.
Hence, normal care should be taken when using the model for predictions of the future.

Figure 1: This figure shows the level curves of the daily traded realised yield y0|w (dotted lines) and the estimated time

average μ̄0|w (solid line), for various constant trading strategies w = (w1, w2)
′. We let w1 and w2 denote the wealth

fractions held in the total return index of S&P500 (x-axis) and gold (y-axis), respectively, and consider the time period
Nov. 2004 to Nov. 2020. The underlying model parameters are assumed to be constant with estimates: μ1 = 0.0891,
σ1 = 0.196, μ2 = 0.0867, σ2 = 0.183, ρ = 0.0394 (source: finance.yahoo.com, tickers: SPY and GLD). We further
take the numéraire to equal the US-bank account with constant interest rate r = 0.015 and display the implied growth
optimal Kelly strategy w∗ = (2.335, 2.542)′. It also follows from Definition 2.7 that the two assets are traded at similar
levels of relative drawdown risk with R0|w = 0.259 for S&P500 and R0|w = 0.234 for gold.

The result presented in Theorem 3.2 is a generalization of the fractional Kelly strategies in [14]. Similar to [3] we allow
the Kelly multiplier to be a real-valued stochastic process but we also allow for an arbitrary numéraire process. The
latter extension is, in part, motivated by the works of Davis and Lleo [5], who show that a terminal utility maximizing
investor can in some situations be characterized as investing a constant wealth fraction in the growth optimal Kelly
strategy and the remaining part in a particular mutual fund related to the intertemporal hedge portfolio in Merton [18].
It follows that the instantaneous mean-variance frontier is parameterized by k ∈ [0, 2] since any value of the Kelly
multiplier outside this region generates a negative rate of instantaneous logarithmic return. Furthermore, the efficient
instantaneous mean-variance frontier is characterized by k ∈ [0, 1] since for any k ∈ [1, 2] it is more efficient (in terms
of achieving the same logarithmic mean at a lower variance) to use the Kelly multiplier 2− k. In other words, when
funds are allocated according to the Kelly criterion it is never optimal to leverage more than the growth optimal Kelly
strategy. Furthermore, the instantaneous relative drawdown aversion of a Kelly strategy takes the simple form

A0|kw∗(t) = A(k(t)), A(k) =
2

k
− 1. (24)

Hence, for a mean-variance efficient Kelly strategy the instantaneous relative drawdown aversion is always greater
or equal than one. Moreover, for any Kelly strategy the relative drawdown aversion is uniquely defined by the Kelly
multiplier k and equals A(k). The representation in Eq. (24) can further be extended to arbitrary trading strategies as
described below.

9
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Definition 3.3. For every F-predictable trading strategy w we define the relative leverage risk process

k0|w(t) =
σ2
0|w(t)

b0|w(t)
.

such that the relative drawdown aversion and drawdown risk processes equal A0|w = A(k0|w) and R0|w = A(2−k0|w).

It is easily seen that there is a one-to-one correspondence between the processes (k0|w, A0|w, R0|w), except for the
points k0|w = 0 and k0|w = 2 where A0|w and R0|w, respectively, are not defined. By excluding the latter point we see
that two trading strategies have the same relative drawdown risk if their relative leverage risk processes are identical.
We also see that for Kelly strategies the relative leverage risk process coincides with the Kelly multiplier as k0|kw∗ = k.
In this case, the relative drawdown risk process behave quantitatively similar to the relative leverage risk process
along the efficient instantaneous mean-variance frontier, k ∈ [0, 1], but indicates a far greater risk over the inefficient
mean-variance frontier, represented by k ∈ (1, 2). For k outside of [0, 2] the relative drawdown risk process is negative
indicating that we are entering a drawdown loving territory. If we interpret −R0|w as a drawdown chance process it
follows that a Kelly strategy with k = 1 + δ, δ ≥ 1, is preferable to one for which the Kelly multiplier k = 1− δ. The
reason being that, although both strategies face the same negative logarithmic drift μ0|w, the higher the magnitude of
the Kelly multiplier the higher the volatility and consequently the higher the probability of hitting an upper barrier
before a lower barrier. In other words, while both such strategies are loosing in the sense of Kelly, the strategy with the
higher magnitude of the Kelly multiplier has a better upside chance 2. Finally, we mention that it is also possible to
define the relative leverage aversion process 1/k0|w and that this process is closely related to Arrow-Pratt’s definition of
relative risk aversion, see [3] for details.

Figure 2: This plot shows Ploss (2;A(k)) (dashed line), representing the probability of halving the numéraire based
wealth before doubling, and Ψ(k) = k(2− k)/2 in Theorem 3.2 (solid line), representing the excess logarithmic return
a Kelly investor can obtain for a unit instantaneous Sharpe ratio, as functions of the Kelly multiplier k.

It is further illuminating to study various probability distributions associated with the relative drawdown measure.
Inspired by [24], we plot in Fig. 2 the probability that an investor will half his (numéraire based) wealth before doubling,
as derived in Eq. (18). We also plot the function Ψ(k) = k(2− k)/2 in Theorem 3.2, indicating the excess return a
Kelly investor can obtain in relation to the maximal instantaneous Sharpe ratio. We see that k = 1 maximizes Ψ, with
Ψ(1) = 1/2, while the probability of halving the wealth before doubling equals 1/3. This is indeed a risky position to
take on. If we instead require Ψ = 1/3, we notice that there are two possible Kelly multipliers that meet this condition:
k = 0.42 and k = 1.58. The corresponding probabilities equal 0.07 and 0.45, respectively. We also confirm that it
is never efficient to use a Kelly multiplier greater than one and that an investor can considerably reduce his risk, by
lowering the Kelly multiplier, without a major reduction of the excess return. The expected time to hit the boundaries,
see Proposition 2.5, is: for k = 0.42(1.00), and a constant instantaneous Sharpe ratio, equal to 1.79(0.46)/s20|w∗ years.

We also compare the results in Corollary 2.6 with market data for S&P500, gold and the US-bank account, as outlined
in Fig. 1. However, in doing so we must consider a finite risk horizon. Without going into the details we state that when

2For readers familiar with laser physics one notices that the risk process R0|w behaves similar to temperature, following the
increasing path 0+ → +∞ → −∞ → 0−. With probability one an upper (lower) barrier will be hit first if R0|w = 0+ (R0|w = 0−)
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Figure 3: This figure shows the daily traded realised 5 and 10 days drawdown densities for various Kelly strategies,
k ∈ {1/4, 1/2, 3/4}, on S&P500, gold and the US-bank account, over the interval Nov. 2004 to Nov. 2020. For
comparison we also include the theoretical drawdown densities corresponding to Eq. (25). The constant model
parameters used are similar to those in Fig. 1.

the initial model parameters (r, μ1, μ2, σ1, σ2, ρ) are constant the resulting portfolio characteristics (μ0|w, σ0|w) are
constant as well. In this special case it follows from the reflection principle of Brownian motion that

P

(
inf

0≤t<T
log

X0|w(t)
X0|w(0)

≤ −nR

)∣∣∣∣
n,R>0

= N

(
−nR− μ0|wT

σ0|w
√
T

)
+ e−nN

(
−nR+ μ0|wT

σ0|w
√
T

)
(25)

In Fig. 3 we plot the realised (daily traded) density function over the time period Nov. 2004 to Nov. 2020 for various
Kelly strategies, k ∈ {1/4, 1/2, 3/4}, and two risk horizons, T ∈ {5, 10} days. For comparison we also plot the
theoretical density function based on estimated constant parameters over the same interval. Similar to Fig. 1, we find a
good agreement between market behaviour and theory.

4 Generalized Kelly Strategies

In the previous section we showed that for Kelly strategies drawdown risk and leverage risk were fully explained by
the Kelly multiplier. In this section we aim to build a similar framework for arbitrary trading strategies. The goal is
to determine under what circumstances two different trading strategies can be said to have equivalent drawdown risk.
We derive a generalization of the Kelly criteria formalizing the thoughts of Asness et al. [2]. That is, we show how to
leverage an arbitrary trading strategy such that the drawdown risk is comparable to that of a Kelly strategy.

Theorem 4.1 (Generalized Kelly). Let v be an arbitrary trading strategy and define

w(t) = k(t)v̂(t), v̂(t) =
1

k0|v(t)
v(t),

for some real-valued F-predictable process k. We call such strategies w generalized Kelly strategies and we refer to the
process k as the Kelly multiplier. The instantaneous squared Sharpe ratio of a generalized Kelly strategy is independent
of k and satisfies

s20|w(t) = s20|v̂(t) = s20|v(t).

The corresponding logarithmic drift and volatility of such a strategy satisfy

μ0|w(t) =
1

2
k(t) (2− k(t)) s20|v(t), σ2

0|w(t) = k2(t)s20|v(t),

such that μ0|w is maximal for k = 1. We call v̂ the optimal generalized Kelly strategy and further observe that

k0|w(t) = k(t).
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Proof. Straightforward calculations yield

b0|w(t) = 〈w,w∗〉V0(t) = k(t)b0|v̂(t) =
k(t)

k0|v(t)
b0|v(t),

σ2
0|w(t) = 〈w,w〉V0

(t) = k2(t)σ2
0|v̂(t) =

k2(t)

k20|v(t)
σ2
0|v(t).

Hence, it follows from Definition 3.1 that s20|w = s20|v̂ = s20|v . Moreover, using Definition 3.3, we obtain

b0|w(t) = k(t)s20|v(t), σ2
0|w(t) = k2(t)s20|v(t),

from which we see that k0|w = σ2
0|w/b0|w = k. Finally, we observe that the logarithmic drift

μ0|w(t) = b0|w(t)− 1

2
σ2
0|w(t) =

1

2
k(t) (2− k(t)) s20|v(t),

is maximal for k = 1, which completes the proof.

We note that Theorem 4.1 reduces to Theorem 3.2 if we let the arbitrary trading strategy v equal a Kelly strategy. This
follows since

v(t) = k(t)w∗(t) ⇒ v̂(t) =
1

k0|kw∗(t)
k(t)w∗(t) = w∗(t). (26)

More importantly, Theorem 4.1 states that the trading strategy v̂ has the same relative leverage risk as the growth optimal
Kelly strategy w∗ for any given trading strategy v. This implies that a generalized Kelly strategy and a Kelly strategy
have identical relative leverage and drawdown risk if and only if they apply the same Kelly multiplier k. Additionally, it
follows that the associate level curves are convex as indicated below.

Proposition 4.2. Let v̂1, v̂2 be optimal generalized Kelly strategies and let k ≥ 0 be a common Kelly multiplier, that is
a real-valued F-predictable process. Then

k0|λkv̂1+(1−λ)kv̂2(t) ≤ λk0|kv̂1(t) + (1− λ)k0|kv̂2(t), λ ∈ [0, 1].

Proof. Straightforward calculations shows that

〈v̂1, v̂2〉V0(t) ≤
1

2
(σ2

0|v̂1(t) + σ2
0|v̂2(t)),

since Eq. (10) implies that

0 ≤ σ2
0|v̂1−v̂2(t) = σ2

0|v̂1(t) + σ2
0|v̂2(t)− 2〈v̂1, v̂2〉V0(t).

Consequently, for λ ∈ [0, 1], we obtain

σ2
0|λv̂1+(1−λ)v̂2(t) = λ2σ2

0|v̂1(t) + (1− λ)2σ2
0|v̂2(t) + 2λ(1− λ)〈v̂1, v̂2〉V0

(t),

≤ λσ2
0|v̂1(t) + (1− λ)σ2

0|v̂2(t).

Furthermore, since b0|λv̂1+(1−λ)v̂2 = λb0|v̂1 + (1− λ)b0|v̂2 and k0|v̂ = 1 for any optimal generalized Kelly strategy v̂,
we see that

k0|λv̂1+(1−λ)v̂2(t) =
σ2
0|λv̂1+(1−λ)v̂2(t)

b0|λv̂1+(1−λ)v̂2(t)
≤

λσ2
0|v̂1(t) + (1− λ)σ2

0|v̂2(t)

λb0|v̂1(t) + (1− λ)b0|v̂2(t)
= 1.

Finally, since k0|kw = kk0|w for any trading strategy and λk0|v̂1 + (1− λ)k0|v̂2 = 1 the proof concludes.

Remark 4.3. The convexity of the level curves corresponding to the relative leverage risk carry over to the level curves of
the relative drawdown risk in the sense that for generalized Kelly strategies w1 = kv̂1 and w2 = kv̂2, where k ∈ (0, 2),
we have

R0|λw1+(1−λ)w2(t) ≤ λR0|w1(t) + (1− λ)R0|w2(t), λ ∈ [0, 1].

Note, however, that this relation might not hold true for arbitrary trading strategies w1, w2 and not even generalized
Kelly strategies with different Kelly multipliers. Hence, care should be taken when adding this result to Proposition 2.8.
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Figure 4: In this plot we show the growth optimal Kelly strategy w∗ for S&P500 and gold, based on the historical
estimates reported in Fig. 1, together with the optimal generalized single name Kelly strategies ê1, ê2 and two
arbitrary optimal generalized Kelly strategies v̂1, v̂2. We highlight the level curves of the relative leverage risk for
k0|w ∈ {k, 1, 2,±∞,−1} (solid thick lines), where k ∈ (0, 1). Note that the relative leverage risk level curves for

k0|w = ±∞ coincide and take the form b0|w = 0. We also show the level curves of the instantaneous variance σ2
0|w

(dotted lines) and the level curves of the rate of logarithmic return μ0|w (dashed lines). Note further that the level curves

of k0|w and σ2
0|w are separated from those of μ0|w by lines of the form b0|w = c, c ∈ R, (dashed-dotted line).

We also notice that the relative drawdown aversion process, for a generalized Kelly strategy, takes the familiar form

A0|kv̂(t) = A(k0|kv̂(t)) = A(k(t)), A(k) =
2

k
− 1. (27)

Furthermore, due to the particular structure of the logarithmic return and the volatility it follows from Theorem 4.1 that
the efficient allocations are those for which k ∈ [0, 1]. In other words, the only difference between a Kelly strategy and
a generalized Kelly strategy is that the Kelly strategy describes the instantaneous mean-variance allocations for which
the the instantaneous Sharpe ratio is maximal, that is the mean-variance frontier.

In Fig. 4 we illustrate the risk profile for Kelly trading the indices S&P500 and gold. We use the notation

ei = (1{i = 1}, . . . ,1{i = N})′ , i = 1, . . . , N, (28)

to represent the single name strategies such that êi denotes the corresponding optimal generalized Kelly strategy. As
can be seen in the figure, the plane is divided by the line R0|w = −1 or equivalently k0|w = ±∞. We call this line the
Markowitz line and notice that it describes the trading strategies for which the instantaneous rate of return b0|w = 0.
As pointed out by Markowitz [15] the area above (under) this line has a positive (negative) expected rate of return.
What Markowitz misses, though, is that as we increase the leverage k > 2 the expected logarithmic return becomes
negative. This increases the probability of the portfolio X0|w to hit any given lower barrier as explained in Proposition
2.5. It is worth stressing, however, that the optimal trading strategies in the mean-variance model of Markowitz are
of the same form as those of the Kelly strategies. The reason being, as can be seen in Fig. 4, is that the optimization
problem of minimizing the instantaneous variance σ2

0|w subject to a constraint of the form b0|w = c, c > 0, is identical
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to maximizing the instantaneous rate of logarithmic return μ0|w for a fixed value of either the instantaneous variance
or of the instantaneous relative leverage risk k0|w. The power of the Kelly theory lies in the fact that μ0|w attains its
maximum along the Kelly line. This therefore sets an upper bound on the maximum leverage, relative to the growth
optimal Kelly strategy, that can be applied. It is also evident from Fig. 4 that all the level curves are convex, which
further provides a geometrical interpretation of Proposition 4.2. In higher dimensions it follows that any R

N -valued
trading strategy w can be represented as an element in SN−1 × R, that is we parameterize the level sets SN−1 by
the Kelly multiplier k. Hence, the generalized Kelly strategies provide a powerful mean to identify portfolios with
equivalent relative draw down risk.

5 Risk Relativity

In this section we show that risk is fundamentally relative to a choice of an arbitrary risk-free asset or portfolio. However,
what makes an asset risk-free is a subjective criteria. For example, a dollar investor will consider euro a risky asset,
while a euro investor will consider dollar a risky asset. Hence, in order to asses risk one must start by making a choice
of what risk-free signifies. We show that the growth optimal Kelly strategy is the only trading strategy for which the
associated (leverage) risk is not dependent on the choice of the risk-free asset. We also establish a numéraire invariant
framework describing how to translate an investor’s viewpoint from one choice of risk-free asset to another. Finally, we
show that correlations and Sharpe ratios are closely interlinked when the relative drawdown risk is traded consistently.

5.1 Numéraire Invariant Framework

In order to study how an investor can compare his portfolio with a general reference portfolio we extend the numéraire
invariant framework introduced earlier. We use the notation Xu|w = Xw/Xu to refer to the ratio of portfolios
using the trading strategies w and the reference strategy u, respectively. Hence, it is clear that Xu|w is independent
of the original numéraire unit and that Xu can be regarded as the risk-free asset in the normalized capital market
(Pu|0, Pu|1, . . . , Pu|N ), where Pu|n = Pn/Xu. However, since none of the primary assets are no longer risk-free the
self-financing condition reads

dXu|w(t)
Xu|w(t)

=

(
1−

N∑
n=1

wn(t)

)
dPu|0(t)
Pu|0(t)

+

N∑
n=1

wn(t)
dPu|n(t)
Pu|n(t)

. (29)

One notes that the reference portfolio Xu can be related to the market numéraire asset P0 by letting u equal the zero

vector 0 = (0, . . . , 0)
′
. More precisely, it follows from the identity Xu|w = X0|w/X0|u and Eq. (9) that

d logX0|w(t) = d logX0|w(t), (30)

which shows that X0 represents a constant scaling of P0 and can therefore be identified with the original market
numéraire. We also see that the rate of logarithmic return for the process Xu|w can be expressed according to

μu|w(t) = μ0|w(t)− μ0|u(t). (31)

Next, let us define the instantaneous covariance process and the corresponding variance process

Vu|w1,w2(t) =
d

dt
[logXu|w1 , logXu|w2 ](t), σ2

u|w(t) = Vu|w,w(t). (32)

We further let bu|w denote the rate of return process and state that Itô’s formula then yields

bu|w(t) = lim
ε→0

1

ε
E

[
Xu|w(t+ ε)−Xu|w(t)

Xu|w(t)
|F(t)

]
= μu|w(t) +

1

2
σ2
u|w(t). (33)

Definition 5.1. Given an arbitrary F-predictable reference strategy u. For every F-predictable trading strategy w we
define the instantaneous generalized Sharpe ratio according to

su|w(t) =
bu|w(t)
σu|w(t)

.

In order to characterize the set of trading strategies for which the instantaneous generalized Sharpe ratio is maximal,
given a fixed reference strategy u, we first introduce a convenient notation after which we present an auxiliary result
relating the instantaneous covariance process Vu to the original covariance process V0.

14
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Definition 5.2. Given an arbitrary F-predictable reference strategy u and an F-predictable trading strategy w we define

wu(t) = w(t)− u(t).

Lemma 5.3. For every reference strategy u, the instantaneous covariance process Vu and the rate of return process
bu can conveniently be expressed in terms of the covariance process V0, related to the original market numéraire P0,
according to

Vu|w1,w2(t)) = V0|w1
u,w

2
u
(t) = 〈w1

u, w
2
u〉V0(t),

bu|w(t) = V0|wu,w∗
u
(t) = 〈wu, w

∗
u〉V0

(t).

Proof. Since Xu|w = X0|w/X0|u it follows from Eq. (32) that

Vu|w1,w2(t) =
d

dt
[logX0|w1 − logX0|u, logX0|w2 − logX0|u](t),

= V0|w1,w2(t)− V0|w1,u(t)− V0|w2,u(t) + V0|u,u(t).

Hence, by the use of Eq. (10) and Definition 5.2 we obtain

Vu|w1,w2(t) = 〈w1, w2〉V0(t)− 〈w1, u〉V0(t)− 〈w2, u〉V0(t) + 〈u, u〉V0(t) = 〈w1
u, w

2
u〉V0

(t).

For the second result we first notice, through direct calculations, that

σ2
0|wu

(t) + σ2
0|u(t)− σ2

0|w(t) = −2〈wu, u〉V0
(t).

We then have

bu|w(t) = μu|w(t) +
1

2
σ2
u|w(t),

= μ0|w(t)− μ0|u(t) +
1

2
σ2
0|wu

(t),

= b0|w(t)− 1

2
σ2
0|w(t)− b0|u(t) +

1

2
σ2
0|u(t) +

1

2
σ2
0|wu

(t),

= b0|w(t)− b0|u(t)− 〈wu, u〉V0(t).

The proof concludes since b0|w − b0|u = 〈wu, w
∗〉V0 as demonstrated in the proof of Theorem 3.2.

It is important to notice that while the instantaneous covariance process Vu and the rate of return process bu depend on
the reference strategy u, they can always be evaluated using the original covariance process V0. We further see that the
reference portfolio Xu indeed represents the risk-free asset since both μu|u and σu|u are identically equal to zero. More
generally, we define the risk concepts as per below.

Definition 5.4. For every F-predictable reference strategy u and trading strategy w we define the relative drawdown
risk process Ru|w and the relative leverage risk process ku|w according to

Ru|w(t) =
1

2

σ2
u|w(t)

μu|w(t)
, ku|w(t) =

σ2
u|w(t)

bu|w(t)
.

Note that the relative drawdown process can further be linked to a drawdown probability by a corresponding generaliza-
tion of Corollary 2.6. We now have all the pieces in place to generalize Theorem 3.2.

Theorem 5.5 (Kelly Invariance). For every F-predictable reference strategy u we have

argmax
w

μu|w(t) = w∗(t).

Furthermore, the trading strategy w that maximizes the magnitude of the instantaneous generalized Sharpe ratio su|w,
for any given reference strategy u, satisfies

wu(t) = k(t)w∗
u(t),

for some real-valued F-predictable process k. We call such strategies Kelly strategies and we refer to the process k as
the Kelly multiplier. The instantaneous squared generalized Sharpe ratio of a Kelly strategy is independent of k and
satisfy

s2u|w(t) = s2u|w∗(t).

15
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The corresponding logarithmic drift and volatility of such a strategy are given by

μu|w(t) =
1

2
k(t) (2− k(t)) s2u|w∗(t), σ2

u|w(t) = k2(t)s2u|w∗(t),

such that μu|w is maximal for k = 1. We further observe that

ku|w(t) = k(t).

Proof. It follows from Lemma 5.3 that

μu|w(t) = bu|w(t)− 1

2
σ2
u|w(t) = 〈wu, w

∗
u〉V0(t)−

1

2
〈wu, wu〉V0(t)

Hence, the first order condition for wu-optimality reads V0(w
∗
u −wu) = 0. The first part of the proof now follows from

the invertibility of V0.

For the second part we observe, similar to Theorem 3.2, that Cauchy-Schwartz’s inequality and Lemma 5.3 implies that
the square of the instantaneous generalized Sharpe ratio in Definition 5.1 satisfies

s2u|w(t) =
b2u|w(t)

σ2
u|w(t)

=
〈wu, w

∗
u〉2V0

(t)

〈wu, wu〉V0
(t)

≤ 〈w∗
u, w

∗
u〉V0

(t) = s2u|w∗(t),

with equality if and only if wu and w∗
u are collinear; that is wu = kw∗

u for some F-predictable real-valued process
k. The proof concludes by evaluating the logarithmic drift and the volatility, with a trading strategy of this form, and
noting that the maximal logarithmic return is achieved at k = 1.

As Theorem 5.5 shows, the growth optimal Kelly strategy w∗ is invariant with respect to the reference strategy u. This
is at first sight quite a surprising result since the maximal instantaneous generalized Sharpe ratio, in general, depends on
both the trading strategy and the reference strategy. Furthermore, only when the growth optimal Kelly strategy is taken
as the reference strategy is the instantaneous generalized Sharpe ratio independent of the trading strategy. However, in
this case we have the trivial but important result

Corollary 5.6. For every F-predictable trading strategy w we have

sw∗|w(t) = 0.

Proof. The proof follows directly from Definition 5.1 and Lemma 5.3.

Hence, not only is the growth optimal Kelly strategy invariant with respect to each investors reference strategy; no
other trading strategy can achieve a higher generalized Sharpe ratio than what is implied from the growth optimal Kelly
strategy.

Next we show that the Kelly strategies satisfy a fundamental equation of balance between logarithmic return and
volatility. In order to do so we first generalize the concept of relative drawdown aversion.

Definition 5.7. For every F-predictable reference strategy u and trading strategy w we define the instantaneous relative
drawdown aversion by the processes

Au|w(t) = 2
μu|w(t)
σ2
u|w(t)

.

Similar to Eq. (24), it follows that the relative drawdown aversion for a Kelly strategy w = u+ kw∗
u is invariant with

respect to the reference strategy u and only depends on the Kelly multiplier as Theorem 5.5 implies that

Au|u+kw∗
u
(t) = A(k(t)), A(k) =

2

k
− 1. (34)

Hence, for any reference strategy u, a Kelly strategy satisfies the fundamental equation of balance between logarithmic
return and volatility

μu|u+kw∗
u
(t) =

1

2
A(k(t))σ2

u|u+kw∗
u
(t). (35)

In order to further characterize the Kelly strategies we look at the relative drawdown and leverage risk. While these risk
measures, in general, depend on both the trading strategy and the leverage strategy, for Kelly strategies the dependency
is fully summarized by the Kelly multiplier

Ru|u+kw∗
u
(t) =

k(t)

2− k(t)
, ku|u+kw∗

u
(t) = k(t). (36)

16
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This implies that two Kelly traders employing the same Kelly multiplier but different reference strategies will both
report the same relative leverage risk when asked to characterize their positions. Yet, when one of the Kelly traders is
asked to characterize both positions the relative leverage risk will be reported differently. The reason is that from the
first Kelly traders perspective the second Kelly trader is not using a Kelly strategy. We further see, by letting k → 0,
that the risk-free asset Xu has zero drawdown risk relative to the reference strategy u. In other words, Ru|u = 0 for any
choice of reference strategy.

Theorem 5.8 (Relative Drawdown Risk of Growth Optimal Kelly Strategy). For every F-predictable reference strategy
u �= w∗ we have

Ru|w∗(t) = 1.

Furthermore, Rw∗|w∗ = 0 and Rw∗|w(t) = −1 for every trading strategy w �= w∗.

Proof. The main result follows directly from Eq. (36), setting k = 1. We then use the relationship Ru|w = −Rw|u
to prove that Rw∗|w(t) = −1 for every trading strategy w �= w∗. The final result follows from the observation that
Ru|u = 0 for any reference strategy.

It is interesting to observe that no matter how close the reference strategy is to the growth optimal Kelly strategy, the
latter strategy always has a constant relative drawdown risk. For instance, we see that Rkw∗|w∗ = 1, for any value of
k �= 1. This is analog to the speed of light in Special Relativity, no matter at what speed you move you still experience
that the maximum speed, that of light, is constant in any reference frame. In fact, the similarities run even deeper.

Theorem 5.9 (Relative Drawdown Risk Velocity of Kelly Strategies). Given an F-predictable reference strategy u and
let w1, w2 be Kelly strategies of the form w1

u = k1w
∗
u and w2

u = k2w
∗
u. Then

Rw1|w2 =
Ru|w2 −Ru|w1

1−Ru|w2Ru|w1

.

Proof. For any Kelly strategy w = u+ kw∗
u we know that Ru|w = k/(2− k). Therefore

Ru|w2(t)−Ru|w1(t)

1−Ru|w2(t)Ru|w1(t)
=

k2(t)
2−k2(t)

− k1(t)
2−k1(t)

1− k2(t)
2−k2(t)

k1(t)
2−k1(t)

=
k2(t)− k1(t)

2− (k2(t) + k1(t))
=

k2(t)−k1(t)
1−k1(t)

2− k2(t)−k1(t)
1−k1(t)

.

In general, however, we know that Rw1|w2 = kw1|w2/(2− kw1|w2). Hence, the proof follows once we proved that the
relative leverage risk process satisfies

kw1|w2(t) =
k2(t)− k1(t)

1− k1(t)
.

By the use of Lemma 5.3 and Definition 5.4 we obtain

kw1|w2(t) =
〈w2 − w1, w2 − w1〉V0

(t)

〈w2 − w1, w∗ − w1〉V0
(t)

=
(k2(t)− k1(t))

2〈w∗
u, w

∗
u〉V0

(t)

(k2(t)− k1(t))(1− k1(t))〈w∗
u, w

∗
u〉V0

(t)
,

which completes the proof.

Remark 5.10. Notice how the velocity of the relative drawdown risk process, parameterized in terms of the Kelly
multiplier, satisfy the same reference change transformation as velocity does in Special Relativity. In other words,
consider two objects moving in the same direction. If an independent observer measures their velocities as v1 and
v2, respectively, then an observer travelling along the first object would measure the velocity of the second object as
(v2 − v1)/(1− v2v1/c2). Note that this expression is identical to ours if we consider velocities relative to the speed of
light. Hence, while the normalizing constant in physics equals the speed of light, the normalizing trading strategy in
economics equals the growth optimal Kelly strategy.

Next, we provide a curious result indicating that there always exists a particular Kelly strategy for which the relative
drawdown risk is invariant with respect to the reference strategy.

Proposition 5.11. Given two F-predictable reference strategies u1, u2 and consider a trading strategy w of the form
wu1 = ku1|u2w∗

u1 . Then
Ru2|w(t) = Ru1|w(t) = Ru1|u2(t).
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Proof. Since w = u1 + ku1|u2(w∗ − u1) is a Kelly strategy with respect to u1 it follows directly from Theorem 5.5
that ku1|w = ku1|u2 . Next, we notice that

ku2|w(t) =
〈w − u2, w − u2〉V0

(t)

〈w − u2, w∗ − u2〉V0(t)
= ku1|u2(t) +

〈w − u2, w − u2 − ku1|u2(w∗ − u2)〉V0
(t)

〈w − u2, w∗ − u2〉V0(t)
.

Straightforward calculations now yield

〈w − u2,w − u2 − ku1|u2(w∗ − u2)〉V0(t) = 〈u2 − u1 − ku1|u2(w∗ − u1), (1− ku1|u2)(u2 − u1)〉V0(t),

= (1− ku1|u2)
(〈u2 − u1, u2 − u1〉V0(t)− ku1|u2〈u2 − u1, w∗ − u1〉V0

(t)
)
.

Hence, by using the definition of ku1|u2 this term vanishes. The proof concludes by converting the result to the relative
drawdown risk.

Figure 5: This picture shows the Kelly strategies w = u+ kw∗
u for the reference strategies u = 0 and u = 2w∗. We

highlight the level curves of leverage risk for ku|w ∈ {k, 1, 2,±∞} (solid thick lines), where k ∈ (0, 1). We also show

the level curves of the instantaneous variance σ2
u|w (dotted lines) and the level curves of the logarithmic return μu|w

(solid thin lines).

However, in order to exemplify that risk is generally relative we show in Fig. 5 the two Kelly strategies corresponding
to the reference strategies u = 0 and u = 2w∗. Both Kelly strategies agree on the profitable area (that is the area where
the logarithmic return μu|w > 0) but completely disagree on which Kelly strategy is efficient (k ∈ (0, 1)) and which is

inefficient (k ∈ (1, 2)). Note further that the joint profitable area according to Markowitz is now sandwiched between
the two lines b0|w = 0 and b2w∗|w = 0.

Finally, in order to easily identify the level curves of the relative leverage risk we generalize Theorem 4.1.

Theorem 5.12 (Generalized Kelly). Given an F-predictable reference strategy u and let v be an arbitrary trading
strategy. Define the trading strategies w and v̂ according to

wu(t) = k(t)v̂u(t), v̂u(t) =
1

ku|v(t)
vu(t),
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for some real-valued F-predictable process k. We call such strategies w generalized Kelly strategies and we refer to the
process k as the Kelly multiplier. The instantaneous squared generalized Sharpe ratio of a generalized Kelly strategy is
independent of k and satisfies

s2u|w(t) = s2u|v̂(t) = s2u|v(t).

The corresponding logarithmic drift and volatility of such a strategy satisfy

μu|w(t) =
1

2
k(t) (2− k(t)) s2u|v(t), σ2

u|w(t) = k2(t)s2u|v(t),

such that μu|w is maximal for k = 1. We call v̂ the optimal generalized Kelly strategy and further observe that

ku|w(t) = k(t).

Proof. The proof follows the exact steps of Theorem 4.1, albeit with an arbitrary reference strategy, and is thus
omitted.

Corollary 5.13. Given an F-predictable reference strategy u and let v be a Kelly strategy such that vu = kw∗
u, for

some Kelly multiplier k. Then
v̂(t) = w∗(t).

Proof. Explicit calculations yield

v̂(t) = u(t) +
1

ku|v(t)
(v(t)− u(t)) = u(t) +

k(t)

ku|u+kw∗
u
(t)

w∗
u(t).

The proof concludes since ku|u+kw∗
u
= k for any reference strategy u.

Hence, with k denoting the Kelly multiplier of a generalized Kelly strategy w = u+ kv̂u, it follows from Definition 5.4
that the relative drawdown risk process satisfies

Ru|u+kv̂u
(t) =

1

Au|u+kv̂u
(t)

=
1

A(ku|u+kv̂u
(t))

=
1

A(k(t))
. (37)

In particular, we see that Ru|v̂ = 1 for any reference strategy u. Note further that every generalized Kelly strategy
satisfies the fundamental equation of balance between logarithmic return and volatility

μu|u+kv̂u
(t) =

1

2
A(k(t))σ2

u|u+kv̂u
(t). (38)

Similar to Proposition 4.2 we can also prove that the level curves of the relative leverage risk process ku|w are convex
for every fixed reference strategy. Furthermore, it is not hard to show that any reference strategy u for which k0|u = 2
has the property that the level curves of ku|w = 2 coincide with those of k0|w = 2. These level curves also agree with
the level curves of μu|w = 0 and μ0|w = 0; details are left to the reader.

This completes the risk picture and highlights the fact that risk is a subjective concept depending on the point of
reference; thus sharply in contrast to the optimal Kelly strategy which is an objective concept independent of the
reference point.

5.2 Change of Reference Frame

It is often of interest to describe how the local characteristics and the relative drawdown risk of a trading strategy depend
on the reference strategy. For instance, a fund manager trading in multiple currencies might want the ability to easily
translate, say, dollar-risk to euro-risk and vice versa. Below we provide the details of how this work in our framework.

In order to get started we notice that there is one evident transformation from which many of the other results follow;
namely

μu2|w(t) = μu1|w(t)− μu1|u2(t). (39)

This result follows trivially from taking the logarithm of the identity Xu2|w = Xu1|w/Xu1|u2 . We now transform this
equation to the risk processes as described below

Proposition 5.14 (Partial Change of Reference - Relative Drawdown Risk). Given F-predictable reference strategies
u1, u2 and a trading strategy w. Then

σ2
u2|w(t)

Ru2|w(t)
=

σ2
u1|w(t)

Ru1|w(t)
−

σ2
u1|u2(t)

Ru1|u2(t)
.
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Proof. The proof follows directly from Definition 5.4 and Eq. (39).

Hence, given that we know how to obtain the volatility process σu2|w we can evaluate the new relative drawdown risk

process Ru2|w and consequently the new relative leverage risk process according to ku2|w = 2Ru2|w/(1 +Ru2|w).
Proposition 5.15 (Change of Reference - Covariance). Given F-predictable reference strategies u1, u2 and trading
strategies w1, w2. Then

Vu2|w1,w2(t) = Vu1|w1,w2(t)− Vu1|u2,w1(t)− Vu1|u2,w2(t) + σ2
u1|u2(t).

Proof. The proof follows from algebraic manipulations using Lemma 5.3 as described below

Vu1|w1,w2(t)− Vu1|u2,w1(t) = 〈w1
u1 , w2

u1〉V0(t)− 〈u2
u1 , w1

u1〉V0
(t) = 〈w1

u1 , w2
u2〉V0

(t),

σ2
u1|u2(t)− Vu1|u2,w2(t) = 〈u2

u1 , u2
u1〉V0

(t)− 〈u2
u1 , w2

u1〉V0(t) = 〈u2
u1 , u2

w2〉V0(t) = 〈u1
u2 , w2

u2〉V0(t).

Furthermore, since

〈w1
u1 , w2

u2〉V0(t) + 〈u1
u2 , w2

u2〉V0(t) = 〈w1
u2 , w2

u2〉V0
(t) = Vu2|w1,w2(t),

the proof concludes.

We now have all the elements in place to describe the transformation of the local characteristics.

Corollary 5.16 (Change of Reference - Local Characteristics). Given F-predictable reference strategies u1, u2 and a
trading strategy w. Then

σ2
u2|w(t) = σ2

u1|w(t)− 2Vu1|u2,w(t) + σ2
u1|u2(t),

bu2|w(t) = bu1|w(t)− bu1|u2(t)− Vu1|u2,w(t) + σ2
u1|u2(t).

Proof. The first result follows directly from Proposition 5.15 and is thus omitted. The second result follows from
expressing Eq. (39) according to

bu2|w(t)− 1

2
σ2
u2|w(t) = bu1|w(t)− 1

2
σ2
u1|w(t)− bu1|u2(t) +

1

2
σ2
u1|u2(t),

and then applying the first result.

Note that the result above further allows us to express the transformation of the instantaneous generalized Sharpe ratio.
The details are left to the reader. Instead we provide an example highlighting the difference between Kelly trading and
Markowitz trading.

Example 5.17. Let us fix two reference strategies u1, u2 and assume, for simplicity, that μu1|u2 = 0. In this case, the
rate of return processes take the form

bu1|u2(t) = bu2|u1(t) =
1

2
σ2
u1|u2(t) =

1

2
σ2
u2|u1(t),

and the corresponding relative leverage risk processes equal ku1|u2(t) = ku2|u1(t) = 2. Hence, it follows from Theorem

5.12 that the optimal generalized Kelly strategy û1, given the reference strategy u2, and the optimal generalized Kelly
strategy û2, given the reference strategy u1, equal

û1(t) = u2(t) +
1

ku2|u1(t)

(
u1(t)− u2(t)

)
=

1

2
u1(t) +

1

2
u2(t),

û2(t) = u1(t) +
1

ku1|u2(t)

(
u2(t)− u1(t)

)
=

1

2
u1(t) +

1

2
u2(t),

respectively. In other words, an optimal Kelly trader (maximizing the rate of logarithmic return) will always hold half
his wealth in each strategy. By contrast, for a Markowitz trader who bases his decisions on the rate of return process the
situation is different. In particular, as shown in Theorem 5.12, we have

bu1|u1+k1(û2−u1)(t) = k1(t)s
2
u1|u2(t), bu2|u2+k2(û1−u2)(t) = k2(t)s

2
u2|u1(t).

For a Markowitz trader, with reference strategy u1, we see that when leveraging (shortening) u2 by applying a positive
(negative) Kelly multiplier k1 the rate of return is positive (negative). However, for a Markowitz trader, with reference
strategy u2, leveraging (shortening) u1, through a positive (negative) Kelly multiplier k2, implies a positive (negative)
rate of return. But this is inconsistent since leveraging, say, u1 is the same as shortening u2 and vice versa. Hence, the
only self-financing strategies w = (1− λ)u1 + λu2 where both Markowitz traders agree on making profits are those for
which 0 < λ < 1. This follows from the identifications k1 = 2λ and k2 = 2(1− λ). However, similar to Fig. 5 we see
that for a fixed value of λ ∈ (0, 1) the corresponding Kelly traders cannot be simultaneously efficient unless λ = 1/2.

20



A PREPRINT - JANUARY 25, 2021

5.3 A Note on Symmetries

We saw in Example 5.17 how the Markowitz approach of forming decisions based on the rate of return process bu|w can
lead to internal contradictions. However, when decisions are based on the rate of logarithmic return process μu|w, as in
the Kelly approach, these contradictions disappear. In this section we take a closer look at these two processes and
provide arguments for why one approach is, in many ways, better than the other.

Our approach make use of the unique decomposition of a bi-variate function into an anti-symmetric and a symmetric
part. That is, suppose we are given a function f : U × U → R, for some set U . If we define

fasym(x, y) =
1

2
(f(x, y)− f(y, x)) , fsym(x, y) =

1

2
(f(x, y) + f(y, x)) , (40)

it is easily seen that fasym is anti-symmetric while fsym is symmetric. Moreover, the decomposition f = fasym+fsym

is unique. We now apply this notation to the processes bu|w, μu|w and σu|w as shown below

basymu|w (t) = μu|w(t), bsymu|w (t) =
1

2
σ2
u|w(t),

μasym
u|w (t) = μu|w(t), μsym

u|w (t) = 0,

σasym
u|w (t) = 0, σsym

u|w (t) = σu|w(t).

What this schematic picture shows is that μu|w and σu|w are the fundamental variables while bu|w is a derived quantity.
In other words, while the volatility process cannot be explained by the rate of logarithmic return process, it would be
possible to replace μu|w and σu|w with expressions involving bu|w and bw|u throughout this paper. However, such an
approach would, of course, be utterly confusing and misleading. In fact, the entire instantaneous covariance process Vu

can be expressed in terms of either the volatility process or the rate of return process as described below.

Lemma 5.18. Given an arbitrary F-predictable reference strategy u and let w1, w2 be any F-predictable trading
strategies. Then

Vu|w1,w2(t) =
1

2

(
σ2
u|w1(t) + σ2

u|w2(t)− σ2
w1|w2(t)

)
= bu|w2(t) + bw1|u(t)− bw1|w2(t).

Proof. The first identity follows directly from Corollary 5.16, while the last identity follows from Eq. (39), after the
change of variables (u1, u2, w) → (w1, u, w2), and the property σ = σsym.

We conclude that modeling of risky assets should be done in terms of the rate of logarithmic return μ and not in terms
of the rate of return b. This statement is further supported by Proposition 2.2 where we showed that the long term
performance of any trading strategy is ultimately determined by the time average of the instantaneous rate of logarithmic
return.

The decomposition introduced above can also be applied to the relative drawdown risk process and to the relative
leverage risk process. Different to the volatility measure we see that relative drawdown risk is a pure anti-symmetric
measure with

Rasym
u|w (t) = Ru|w(t), Rsym

u|w (t) = 0. (41)

By contrast, the relative leverage risk process has both anti-symmetrical and symmetrical components

kasymu|w (t) =
2Ru|w(t)

1−R2
u|w(t)

, ksymu|w (t) = −
2R2

u|w(t)

1−R2
u|w(t)

. (42)

Alternatively, we can express the anti-symmetrical and symmetrical components of the relative leverage risk process
using the decomposition for the relative leverage aversion process 1/ku|w. If we ignore the scaling factor (and the
degenerate case where u = w) we obtain the simple expressions

1

ku|w(t)
− 1

kw|u(t)
=

1

Ru|w(t)
,

1

ku|w(t)
+

1

kw|u(t)
= 1. (43)

Finally, we stress that the correct way to view the instantaneous generalized Sharpe ratio is through the formula

su|w(t) =
μu|w(t)
σu|w(t)

+
1

2
σu|w(t) = sasymu|w (t) + ssymu|w (t). (44)

Hence, for μu|w fixed, the instantaneous generalized Sharpe ratio explodes (and thereby generating arbitrage opportu-
nities) should the volatility σu|w tend to either zero or infinity. Bermin and Holm [3] show that, when u = 0, Kelly
traders automatically force the portfolio volatility process and in particular the correlation process associated with V0

towards a trading equilibrium. However, instead of repeating their rather lengthy arguments, for an arbitrary reference
strategy u, we present below a different approach supporting their claims.
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5.4 Relative Drawdown Risk and Correlation

In this section we show how the instantaneous correlation between two arbitrary portfolios can conveniently be identified
when the relative drawdown risk is consistently traded. We use the notation

Vu|w1,w2(t) = σu|w1(t)ρu|w1,w2(t)σu|w2(t), (45)

when referring to the instantaneous correlation process.

Proposition 5.19. Given an arbitrary F-predictable reference strategy u and let v1, v2 be any F-predictable trading
strategies such that Ru|v1 = Ru|v2 . Then

ρu|v1,v2(t) =

{
σu|v1(t)/σu|v2(t)
σu|v2(t)/σu|v1(t)

⇔ Ru|v1(t) = Ru|v2(t) =

{
Rv1|v2(t)
Rv2|v1(t)

.

Furthermore, if Ru|v1 = Ru|v2 �= −1 we have the alternative characterization

σu|v1(t)/σu|v2(t) = su|v1(t)/su|v2(t).

Proof. Since v1, v2 have the same relative drawdown risk it follows from Theorem 5.12 that there exists a common
Kelly multiplier such that

v1(t) = u(t) + k(t)
(
v̂1(t)− u(t)

)
, v2(t) = u(t) + k(t)

(
v̂2(t)− u(t)

)
.

Hence, we can view these trading strategies as generalized Kelly strategies. By combining Proposition 5.14 and Lemma
5.18 we find

ρu|v1,v2(t) =
1

2

(
σu|v1(t)

σu|v2(t)
+

σu|v2(t)

σu|v1(t)
−

σ2
v1|v2(t)

σu|v1(t)σu|v2(t)

)
,

=
1

2

(
σu|v1(t)

σu|v2(t)

(
1 +

Rv1|v2(t)

Ru|v1(t)

)
+

σu|v2(t)

σu|v1(t)

(
1− Rv1|v2(t)

Ru|v2(t)

))
.

The first result then follows from studying the solutions under the assumption that Ru|v1 = Ru|v2 , while making use of
the identity Rv2,v1 = −Rv1,v2 . The proof concludes from the observation that

su|w(t) =
1

2

(
1 +

1

Ru|w

)
σu|w(t),

for any trading strategy w.

It is interesting to note that we recover the expression for correlation equilibrium in [3] by simply requiring the relative
drawdown risk to satisfy a triangle consistency criteria. Our approach further highlights the fact that when the relative
drawdown risk between two arbitrary portfolios satisfies the triangle consistency criteria the correlation cannot be
negative. Note further that the two branches in the result above are mutually exclusive since the magnitude of the
correlation is bounded by one.

Example 5.20. In order to illustrate the notion of trading equilibrium first presented in [3] we consider a reduced
market consisting of two risky assets and the market numéraire asset. Straightforward calculations, using Theorem 3.2,
then verify that the growth optimal Kelly strategy equals

argmax
w

μ0|w(t) =
1

1− ρ20|e1,e2(t)

(
s0|e1(t)− ρ0|e1,e2(t)s0|e2(t)

σ0|e1(t)
,
s0|e2(t)− ρ0|e1,e2(t)s0|e1(t)

σ0|e2(t)

)′
.

We further assume that the two assets are traded consistently with respect to the market numéraire; that is we assume
that there exists a process R �= −1 such that R0|e1 = R0|e2 = R. This means that the individual relative leverage

processes satisfy k0|e1 = k0|e2 = 2R/(1 +R). We let k denote the common relative leverage process and note, from

Theorem 4.1, that e1 = kê1 and e2 = kê2. Without loss of generality we now assume that σ0|e2 > σ0|e1 and consider

the case where the instantaneous correlation process ρ0|e1,e2 = σ0|e1/σ0|e2 . It then follows from Proposition 5.19 that

ρ0|e1,e2 = s0|e1/s0|e2 which implies that the growth optimal Kelly strategy w∗ = ê2. Hence, an investor who applies

the same Kelly multiplier to the growth optimal Kelly strategy as to the single name strategies will set w = kw∗ = e2.

We now compare this allocation with the trading strategies set by an investor using the reference strategy u = e1. If
such an investor can trade in both the risky asset and the market numéraire the corresponding Kelly strategy takes the
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Figure 6: This picture highlights the trading equilibrium corresponding to the instantaneous correlation process
ρ0|e1,e2 = σ0|e1/σ0|e2 , where σ0|e2 > σ0|e1 . Under the additional assumption that k0|e1 = k0|e2 = k, the growth

optimal Kelly strategy w∗ = ê2. An investor, with reference strategies u = 0, who applies the Kelly multiplier k to
the growth optional Kelly strategy will consequently set w = kw∗ = e2. This trading strategy is identical to the one
obtained by an investor, with reference strategies u = e1, who applies the Kelly multiplier k to a generalized Kelly
strategy v̂ which only trades in the two risky assets (blue arrow). We also highlight the optimal trading strategy, with
respect to the reference strategies u = e1, for an investor who can trade in both the risky assets and in the market
numéraire (red arrow).

form w = e1 + k(ê2 − e1). This trading strategy is represented by the red arrow in Fig. 6. Next, we consider the
situation where the investor can only trade in the two risky assets. We set w = e1 + k(v̂− e1) for some Kelly multiplier
k and some trading strategy v̂ such that w1 + w2 = 1. Straightforward calculations then show that any trading strategy
v of the form v = xe1 + (1− x)e2, for some real-valued F-predictable process x, meets the requirement. By the use of
Lemma 5.3 and Definition 5.4 we now compute ke1|xe1+(1−x)e2 = (1− x)ke1|e2 , which together with Theorem 5.12
yields

w(t) = e1(t) +
k(t)

ke1|e2(t)
(e2(t)− e1(t)).

This trading strategy is represented by the blue arrow in Fig. 6. Finally, it follows from Proposition 5.19 that ke1|e2 = k
when the instantaneous correlation ρ0|e1,e2 = σ0|e1/σ0|e2 , σ0|e2 > σ0|e1 . Hence, in this case, we obtain the same

allocation w = e2 as we did for a Kelly trader with reference strategy u = 0.

6 How to Beat an Index

We end this paper with the explicit application of how to beat an index. More precisely, we investigate how to maximize
the logarithmic return in excess of that for the index, given an arbitrary leverage target. In fact this is almost precisely
what Theorem 5.5 is about and the steps to take are:
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• Identify the reference strategy u and its opportunity set.

• Potentially add risky assets to the opportunity set of the reference strategy.

• Compute the growth optimal Kelly strategy w∗ for the extended opportunity set.

• Choose a risk level R > 0 and set the Kelly multiplier k = 2R/(1 +R) accordingly.

• Form the Kelly strategy w = u+ k(w∗ − u).

The Kelly strategy described above is guaranteed to have maximal generalized Sharpe ratio. However, this does not
necessarily mean that for a fixed relative drawdown risk level the Kelly strategy is the one with maximal rate of
logarithmic return. We provide the missing detail below.

Proposition 6.1. Given an arbitrary F-predictable reference strategy u and let R denote an F-predictable risk target.
Then

argmax
w s.t. Ru|w=R>0

μu|w(t) = u(t) +
2R(t)

1 +R(t)
(w∗(t)− u(t)) ,

argmin
w s.t. Ru|w=R<0

μu|w(t) = u(t) +
2R(t)

1 +R(t)
(w∗(t)− u(t)) .

Proof. Let v be an arbitrary trading strategy and define

w(t) = u(t) + k(t) (v̂(t)− u(t)) , k(t) =
2R(t)

1 +R(t)
.

Then, as shown in Theorem 5.12, w is a generalized Kelly strategy with Ru|w = 1/A(k) = R. Note further that any
trading strategy w for which Ru|w = R takes the form above for some trading strategy v̂ such that ku|v̂ = 1. By
combining Theorem 5.5 and Theorem 5.12 we therefore get

|μu|w(t)| = 1

2
|k(t)(2− k(t))|s2u|v̂(t) ≤

1

2
|k(t)(2− k(t))|s2u|w∗(t) = |μu|w∗(t)|.

We finally observe that k(2− k) > 0 ⇔ k ∈ (0, 2) ⇔ R > 0. This concludes the proof.

The above result shows that one should always use a Kelly strategy when trying to beat an arbitrary reference strategy.
Not only will such a strategy yield the highest rate of logarithmic return for every fixed risk level R > 0, it also yields
the maximal generalized Sharpe ratio.

In Fig. 7 we consider the case where an investor can trade in S&P500, gold and the US-bank account. The reference
strategies equal either the US-bank account, u = 0, or the total return index of S&P500, u = e1. In order to derive the
local characteristics of the corresponding Kelly strategies we first notice, by the use of Definition 5.1 and Lemma 5.3,
that we can relate the generalized Sharpe ratio (with respect to u) of the optimal Kelly strategy to the volatility (with
respect to u = 0) of a portfolio long the optimal Kelly strategy and short the reference strategy, according to

s2u|w∗(t) = σ2
0|w∗−u(t) = 〈w∗ − u,w∗ − u〉V0(t). (46)

Straightforward calculations, using the estimated parameters in Fig. 1, then yield s0|w∗ = 0.665 and se1|w∗ = 0.543.
Note that, in each case, these are the maximal generalized Sharpe ratios for the given reference strategies. For
comparison we also state that the generalized Sharpe ratio of the total return index of S&P500, with respect to the
US-bank account, equals s0|e1 = 0.476. Hence, by adding gold to the opportunity the generalized Sharpe ratio can be
improved.

w k0|w R0|w s0|w μ0|w σ0|w ke1|w Re1|w se1|w μe1|w σe1|w
e1 0.412 0.259 0.476 0.074 0.196 0 0 0 0 0
k0|e1w∗ 0.412 0.259 0.665 0.145 0.274 0.412 0.259 0.465 0.071 0.191
e1 + k0|e1w∗

e1 0.563 0.392 0.649 0.170 0.365 0.412 0.259 0.543 0.096 0.223
e1 + kw∗

e1 0.412 0.259 0.570 0.106 0.235 0.116 0.061 0.543 0.032 0.063
Table 1: Portfolio characteristics, with Kelly multiplier k = 0.116, for the opportunity set: S&P500, gold and US-bank
account. We use the estimated parameters in Fig. 1 such that for the fixed risk level Ru|w = 0.259, u ∈ {0, e1}, we
have maxw μ0|w = 0.145 and maxw μe1|w = 0.096. Note further that maxw μe1|w = 0.032 for the fixed risk level
Re1|w = 0.061.
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Figure 7: This plot shows the growth optimal Kelly strategy when the reference strategy equals the total return index of
S&P500, u = e1, based on the historical estimates reported in Fig. 1. We highlight the level curves of leverage risk for
ku|w ∈ {k0|e1 , 1, 2,±∞}.

However, in order to calculate the exact improvement we must fix the reference strategy and the Kelly multiplier. In
Table 1 we consider various trading strategies, including the strategy w = e1 + k(w∗ − e1), where the Kelly multiplier
k is chosen such as to match the leverage risk of S&P500 relative to the US-bank account

k0|e1(t) = k0|e1+k(w∗−e1)(t). (47)

In this case, it is easily seen that k solves a quadratic equation with k = 0 being one solution. Straightforward algebraic
manipulations further verify that the second solution equals

k(t) = 1− (1− k0|e1)
s20|w∗(t)

s2e1|w∗(t)
. (48)

Table 1 verifies that one should always use a Kelly strategy, as in Proposition 6.1, when trying to beat an index.
There is, however, great flexibility in how to set the targeted risk level as demonstrated above. We also observe that
ke1|w = k0|w = k0|e1 for the trading strategy w = k0|e1w∗, as proved in Proposition 5.11.

7 Conclusions

In this paper we build a comprehensive framework that allows an investor to analyze leverage risk for arbitrary trading
strategies and for arbitrary reference assets (or portfolios). Key to our framework is the notion of relative drawdown
risk where relative means relative to an arbitrary chosen reference asset. With this viewpoint there is no such thing as
an objective risk-free asset. For instance, an investor who holds dollar as his reference asset considers euro as a risky
investment and interchangeably an investor who holds euro as his reference asset considers dollar as a risky investment.
No view is better then the other; it is just a matter of what is the reference asset and, thereby, what asset is considered
risk-free. So the immediate question is: what if one were to choose a reference portfolio of currencies with, say, fifty
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percent in dollar and fifty percent in euro. How would one calculate drawdown risk in such a case? This is one of the
main questions we address and derive the solution for in this article. We also characterize the set of all trading strategies
facing the same relative drawdown risk and additionally we show how to translate an investor’s viewpoint from one
choice of reference asset (or portfolio) to another.

The other main question we attempt to answer is: how to beat an index. In order to answer this question we first prove
that the growth optimal Kelly strategy is the only trading strategy for which the relative drawdown risk is not dependent
on the choice of the reference asset. This implies that an investor trying to beat an index should always invest a fraction
of his wealth in the growth optimal Kelly strategy and the remaining wealth in the index. The particular fraction chosen
to invest in the growth optimal Kelly strategy depends on the drawdown risk relative to the index that the investor
targets. The fact that such a simple linear trading rule is locally efficient is quite remarkable.

We also show that, for a given reference asset, the correlation between two arbitrary portfolios with identical relative
drawdown risk equals the ratio of their generalized Sharpe ratios if and only if the relative drawdown risk is traded
consistently. This observation supports a claim in [3] where such a result is derived, albeit through different methods, as
a trading equilibrium. More surprisingly, we find that leverage applied to the growth optimal Kelly strategy affects
the relative drawdown risk in much the same way as the speed of light affects velocities in Einstein’s theory of special
relativity.

A Appendix

In this section we provide the proof of Proposition 2.5. The results derived are standard applications of Feller’s test for
explosions and for ease of reading we use the terminology of [10] as much as possible.

Proof. We start by noticing that a portfolio for which the the relative drawdown aversion is held constant evolves
according to

d logX0|w(t) =
1

2
Aσ2

0|w(t)dt+ σ0|w(t)dW (t), X0|w (0) = x0,

for some Brownian motion W . This follows from our initial assumption that the processes governing the risky assets
have continuous sample paths. Furthermore, the stochastic process W̄ defined through the relationship

W̄
(
tσ̄2

0|w(t)
)
=

∫ t

0

σ0|w(s)dW (s), lim
t→∞ tσ̄2

0|w(t) = ∞ a.s.

is again a Brownian motion according to Lévy’s theorem [10]. We now introduce the process

dY (t) =
1

2
Adt+ dW̄ (t), Y (0) = 0,

such that

log
X0|w(t)

x0
= Y (h(t)) , h(t) = tσ̄2

0|w(t) =
∫ t

0

σ2
0|w(s)ds.

This shows that with ηa,b = inf{t ≥ 0 : Y (t) /∈ (log a, log b)} we have ηa,b = h(τ0|a,b). Hence, ηa,b is a.s. finite
(infinite) if and only if τ0|a,b is a.s. finite (infinite). Following [10] we define the scale function p and the corresponding

function v associated with the process Y , using Y (0) = 0 as the reference point for convenience, according to

p (y) =
1

A
(1− exp(−yA)) , v (y) =

∫ y

0

p′(x)
∫ x

0

2dz

p′(z)
dx. (49)

For a > 0 and b < ∞ it follows that p(log a) > −∞ and p(log b) < ∞. The probabilities of Y hitting either of the
barriers (log a, log b) can then be found in [10] (Proposition 5.22) and translate to the original problem according to

P(X0|w(τ0|a,b) = cx0) = P(Y
(
η0|a,b

)
= log c), c ∈ {a, b}.

We further calculate

v (y) =
2

A
(y − p (y)) ,

from which we see that v(log a), v(log b) < ∞. From [10] (Propositions 5.32) we then conclude that E[ηa,b] < ∞,
which together with Doob’s optional sampling theorem yields

E[Y (ηa,b)] =
1

2
AE[ηa,b].
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The expression for E[ηa,b] can now be derived from the alternative representation

E[Y (ηa,b)] = P(Y (ηa,b) = log a) log a+ P(Y (ηa,b) = log b) log b.

Note further that E[ηa,b] < ∞ implies that ηa,b is a.s. finite, which in turn implies that τ0|a,b is a.s. finite.

In the limit as a → 0 and b → ∞ we obtain v(±∞) = ∞. Feller’s test for explosions, see [10] (Theorem 5.29),
then states that η0,∞ (and hence τ0|0,∞) is infinite with probability one. In order to characterize explosions from the

intervals (0, b), b < ∞, and (a,∞), a > 0, we compute p(−∞) = −∞, A ≥ 0, and p(∞) = ∞, A ≤ 0. From [10]
(Proposition 5.32) we then conclude that η0,b < ∞ a.s. for A ≥ 0 and that ηa,∞ < ∞ a.s. for A ≤ 0.
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