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Abstract

In this paper we present a geometric approach to portfolio theory, with the aim to

explain the geometrical principles behind risk adjusted returns; in particular Jensen’s

alpha. We find that while the alpha/beta approach has severe limitations (especially in

higher dimensions), only minor conceptual modifications are needed to complete the

picture. However, these modifications (e.g. using risk adjusted Sharpe ratios rather than

returns) can only be appreciated once a full geometric approach to portfolio theory is

developed. We further show that, in a complete market, the so called market price of risk

vector is identical to the growth optimal Kelly vector, albeit expressed in coordinates of

a different basis. For trading strategies collinear to the growth optimal Kelly vector, we

formalise a notion of relative value trading based on the risk adjusted Sharpe ratio. As

an application we show that a derivative having a risk adjusted Sharpe ratio of zero has

a corresponding price given by the the minimal martingale measure.
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1 Introduction

In this paper we present a geometric approach to portfolio theory, in part based on the
framework outlined in Bermin and Holm (2021b). More precisely, we consider an opportunity
set consisting of N primary assets and a numéraire asset, such that a self-financing trading
strategy can, for a fixed point in time, be seen as an element in RN . This vector space is
further endowed with a natural inner product, through the instantaneous covariance matrix
of logarithmic excess returns, which thus forms a Hilbert space. As shown in Bermin and
Holm (2021b), the instantaneous rate of excess portfolio return can then be represented
as the inner product of the corresponding trading strategy and the growth optimal Kelly
trading strategy. It is this unique feature that allows us to formulate a geometric approach
to portfolio theory by means of a single vector (i.e. the growth optimal Kelly vector) and the
inner product in our Hilbert space.

Since the growth optimal Kelly vector plays a central role to this study, we pay homage to
the original contributors Kelly (1956) and Latané (1959). While early promoters exist, see for
instance Hakansson and Ziemba (1995), Thorp (2011), and the references therein, the Kelly
theory has nonetheless been subject to severe criticism over the years, see Ziemba (2014)
for a historical recount. Recent studies, like Platen (2006), Bermin and Holm (2021b), take
a more neutral approach when arguing that an investor who, for a fixed level of volatility,
prefers higher rate of excess return to lower chooses to allocate the wealth proportional to the
Kelly criterion. Furthermore, any such trading strategies have maximal instantaneous Sharpe
ratio, see Sharpe (1966, 1994), and thus lie on the efficient (local) frontier in the sense of
Markowitz (1952) and Tobin (1958). The reason being that trading strategies instantaneously
uncorrelated with the growth optimal Kelly strategy have a zero rate of excess return, yet (in
general) a positive volatility. Another interesting aspect of the growth optimal Kelly strategy
is that the reciprocal of the portfolio value can be seen as an admissible stochastic discount
factor, Long (1990). We refine this result by showing that the corresponding market price of
risk vector is identical to the growth optimal Kelly vector, albeit expressed in coordinates
of a different basis, when the market is complete. Hence, an immediate consequence of
our geometrical approach is that we strengthen the connection between these, sometimes,
separate fields of research. It also provides new means to use portfolio theory in order to
value derivatives in incomplete markets.
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The main motivation, however, for writing this paper is to explain and clarify the
geometrical principles behind risk adjusted returns; in particular Jensen’s alpha as introduced
in Jensen (1968). In doing so, it becomes apparent that one must also explain the meaning of
the beta parameter. In this paper we let the reference asset, for both alpha and beta, be an
arbitrary portfolio and not necessarily the unobservable market portfolio. The first observation
we make is that given any two trading strategies, representing an investor’s portfolio and the
reference asset, we can achieve any targeted alpha and beta values by appropriately applying
leverage to each trading strategy. From this, one cannot but conclude that the concept of risk
adjusted returns is not well captured by the alpha and beta parameters. In fact, we argue
that neither a higher alpha, for a fixed beta, nor a lower beta, for a fixed alpha, is strictly
better for an investor. By studying the geometry of alpha and beta we show that alpha
describes the excess return of a particular portfolio, formed from the investor’s portfolio in
such a way that it is locally uncorrelated with the reference asset. This particular portfolio
consists of being long the investor’s portfolio and adding beta percent of a short position in
the reference asset. Forming this portfolio, however, does not tell us how best to trade in
order to reach the maximal instantaneous Sharpe ratio, or equivalently to be on the efficient
(local) frontier. Nor does it tell us what (logarithmic) excess return can be achieved for a
given level of risk. We circumvent the problems with alpha and beta by applying the risk
adjustment to the Sharpe ratio, rather than to the excess return itself. One benefit of taking
this approach is that the magnitude of the Sharpe ratio is invariant with respect to leverage.
Overall, we find that while the alpha/beta approach has severe limitations (especially in
higher dimensions), only minor conceptual modifications are needed to complete the picture.
However, these minor modifications (e.g. using risk adjusted Sharpe ratios rather than risk
adjusted returns) can only be appreciated once a full geometric approach to portfolio theory
is developed.

In addition, we derive a number of intermediate results that are of interest by themselves.
We show that the growth optimal Kelly vector on a subspace equals the orthogonal projection
of the growth optimal Kelly vector onto that subspace. We also show that the length of any
growth optimal Kelly vector equals its instantaneous Sharpe ratio. A financial interpretation,
of these two results, is that the maximal Sharpe ratio decreases as we reduce the opportunity
set. We further show that the instantaneous correlation between an arbitrary trading strategy
and its corresponding growth optimal Kelly strategy can be expressed as the ratio between
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their Sharpe ratios. Additionally, we derive a general bound for the correlation between
two arbitrary trading strategies in terms of their Sharpe ratios and the Sharpe ratio of the
corresponding growth optimal Kelly strategy. By analyzing the level sets of various financial
quantities we also find that points in the mean-variance space cannot, in general, be associated
with a unique trading strategy. Only the points on the efficient frontier (that is those with
maximal Sharpe ratio) can uniquely be identified. For such trading strategies, collinear to
the growth optimal Kelly vector, we formalise the notion of relative value trading that is
implicit in Platen (2006) and Bermin and Holm (2021a). This allows us to explicitly quantify
the additional return an investor can obtain for a fixed level of risk. Thereafter, we apply
geometric principles to investigate derivative pricing and introduce the concept of pricing by
means of No Added Relative Value (NARV, for short). We say that this concept applies to a
given asset, relative an initial portfolio, when no value can be added by augmenting the initial
opportunity set with the given asset. Using geometric principles we show that the NARV
price of a derivative is defined such that its risk adjusted Sharpe ratio equals zero and that
this price further corresponds to the no-arbitrage price of the, so called, minimal martingale
measure of Föllmer and Schweizer (1991); a result first derived in Bermin and Holm (2021a),
albeit with much different methods. Finally, we show how to extend the geometric approach
such that risk can be measured against an arbitrary asset, different from the numéraire, as
described in Bermin and Holm (2021b).

In order to derive our result we use tensor analysis. While this is not a standard approach
in the financial literature, it greatly simplifies the notation and geometrical understanding,
compared to a formalism based on matrix algebra. Hopefully, the readers agree with us once
passed the initial hurdle.

The paper is organized as follows. In section two we briefly recap the framework laid out
in Bermin and Holm (2021b). In section three we introduce basic notations from geometric
algebra, after which we establish the portfolio framework in a number of subsections. In
section four we investigate Jensen’s alpha; starting with the simple case of how to best trade
in two assets and following up with the general case of how to best trade in two opportunity
sets. Section five deals with relative value trading and its connection to derivative pricing,
while in section six we briefly explain how to measure risk against an asset different from the
numéraire.
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2 Basic Portfolio Theory

We consider a capital market consisting of a number of primary assets (P0, P1, . . . , PN)

expressed in some common numéraire unit, say US dollar. An asset related to a dividend
paying stock is seen as a fund with the dividends re-invested. All assets are assumed to
be positive adapted continuous processes living on a filtered probability space (Ω,F ,F,P),
where F = {F(t) : t ≥ 0} is a right-continuous increasing family of σ-algebras such that
F(0) contains all the P-null sets of F . As usual we think of the filtration F as the carrier of
information. We further let P0 be the numéraire asset of the economy, describing how the
value of the numéraire unit changes over time, and introduce the relative prices P0|n = Pn/P0.

An investor can trade in the assets and throughout this paper we assume that there
are no transaction fees, that short-selling is allowed, that trading takes place continuously
in time, and that trading activity does not impact the asset prices. We define a trading
strategy as an F-predictable vector process w = (w1, . . . , wN )′, representing the proportion of
wealth invested in each asset, and we let Xw denote the corresponding portfolio. In order to
analyze the performance of the numéraire based wealth process X0|w = Xw/P0 we impose
the restriction that, when re-balancing the portfolio, money can neither be injected nor
withdrawn. Such trading strategies are said to be self-financing and satisfy

dX0|w(t)

X0|w(t)
=

N∑
n=1

wn(t)
dP0|n(t)

P0|n(t)
. (1)

Note that since X0|0 is constant, 0 = (0, . . . , 0)′, the trading strategy X0 can always be
identified with the market numéraire asset P0 for purposes when the proportionality constant
plays no role. More generally, an investor can equally compare the performance of his trading
strategy with an arbitrary reference strategy. We use the notation Xu|w = Xw/Xu to refer to
the ratio of portfolios using the trading strategies w and the reference strategy u, respectively.
Since Xu|w is independent of the original numéraire unit we may view Xu as the risk-free
asset in the normalized capital market (Pu|0, Pu|1, . . . , Pu|N), where Pu|n = Pn/Xu. In this
setup the self-financing condition reads

dXu|w(t)

Xu|w(t)
= w0(t)

dPu|0(t)

Pu|0(t)
+

N∑
n=1

wn(t)
dPu|n(t)

Pu|n(t)
, w0(t) = 1−

N∑
n=1

wn(t). (2)
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The instantaneous rate of return of the trading strategy w, in excess of the reference strategy
u, can therefore be expressed in terms of the instantaneous rate of excess return of the
numéraire asset and the risky assets. We write this as

bu|w(t) = w0(t)bu|0(t) +
N∑
n=1

wn(t)bu|n(t), (3)

such that bu|0 = bu|0 and bu|en = bu|n for en = (0, . . . , 0, 1, 0, . . . , 0)′ being the n’th coordinate
vector corresponding to the investable assets. Note that when u = 0 and the numéraire asset
is taken to be locally risk free (i.e. a bank account) we measure the rate of excess return
relative the interest rate. We further define the instantaneous covariance process (by means
of the quadratic covariation process, see Karatzas and Shreve (1988)) and the corresponding
instantaneous variance process

Vu|v,w(t) =
d

dt
[logXu|v, logXu|w](t), σ2

u|w(t) = Vu|w,w(t), (4)

while the instantaneous correlation process ρu|v,w is implicitly defined by

Vu|v,w(t) = σu|v(t)ρu|v,w(t)σu|w(t). (5)

We also let µu|w denote the rate of logarithmic excess return and claim that a simple application
of Itô’s formula yields

µu|w(t) = bu|w(t)− 1

2
σ2
u|w(t). (6)

Additionally, we follow Bermin and Holm (2021b) and introduce a few more important
concepts. First, we define the generalized instantaneous Sharpe ratio

su|w(t) =
bu|w(t)

σu|w(t)
, (7)

Second we define the relative leverage risk processes ku|w and the relative drawdown process
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Ru|w according to

ku|w(t) =
σ2
u|w(t)

bu|w(t)
, Ru|w(t) = R

(
ku|w(t)

)
, R(k) =

k

2− k
. (8)

As shown in Bermin and Holm (2021b) any bankruptcy-avoiding trading strategy holding the
relative leverage risk process ku|w constant over time, at say a level k ∈ (0, 2), has a maximal
drawdown distribution given by the simple analytical formula

P
(

inf
0≤t<∞

log
Xu|w(t)

Xu|w(0)
≤ −nR (k)

)
= e−n, n ≥ 0. (9)

While the formula provides an intuitive interpretation for the relative drawdown risk we
do not necessarily require that the relative leverage risk process is kept constant over time.
Instead we directly associate drawdown risk with the process Ru|w and recall from Bermin
and Holm (2021b) that this process shares many of the properties seen in coherent and convex
risk measures, see Artzner et al. (1999), Föllmer and Schied (2002) for further details.

What makes the proposed framework compelling is that all quantities can be computed
from the instantaneous covariance and rate of excess return processes. The dependency on the
reference strategy can further be removed as explained below. Define the covariance matrix
process V0 of the investable assets, relative to the market numéraire, by the components

V0|n,m(t) = V0|en,em(t) =
d

dt
[logP0|n, logP0|m](t), n,m ∈ {1, . . . , N}. (10)

Assume that the matrix V0 is a.s. positive definite such that it generates an inner product of
the form 〈v, w〉V0 = v′V0w. It now follows, from Eqs. (1) and (3), that

V0|v,w(t) = 〈v(t), w(t)〉V0(t), b0|w(t) = 〈w∗(t), w(t)〉V0(t), w∗(t) = V −10 (t)b0(t). (11)

The particular trading strategy w∗ is commonly known as the growth optimal Kelly strategy
and it is easily seen, using Eqs. (6) and (11), that it can be characterized as

w∗(t) = arg max
w(t)

µ0|w(t) = arg max
w(t)

µu|w(t), ∀u. (12)
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The observation that the growth optimal Kelly strategy is independent of the reference
strategy follows from the alternative representation Xu|w = X0|w/X0|u, which implies that
µu|w = µ0|w−µ0|u. Finally, we extend Eq. (11) to an arbitrary reference strategy as described
below

Proposition 2.1. For every reference strategy u, the instantaneous covariance process Vu
and the rate of excess return process bu equal

Vu|v,w(t) = V0|v−u,w−u(t), bu|w(t) = V0|w∗−u,w−u(t).

Proof. The proof follows from straightforward calculations, see Bermin and Holm (2021b).

This result shows that the minimal representation of the framework is given by the
quantities (w∗, V0). Once these quantities are specified everything else is computable. Having
established the connection between an arbitrary reference strategy and the market numéraire
we may now address topics such as: how can an investor increase the generalized Sharpe
ratio of a portfolio. In order to answer such a question we follow Nielsen and Vassalou (2004)
and apply a Taylor expansion to the term su|w+ε(v−u). By the use of Lemma 2.1 we compute

su|w+ε(v−u)(t) = su|w(t) +
αu|v,w(t)

σu|w(t)
ε+O(ε2), (13)

where

αu|v,w(t) = bu|v(t)− βu|v,w(t)bu|w(t), βu|v,w(t) =
Vu|v,w(t)

Vu|w(t)
=
σu|v(t)ρu|v,w(t)

σu|w(t)
. (14)

We recognise αu|v,w as a generalized Jensen’s alpha, see Jensen (1968), describing how the
instantaneous excess return of the trading strategy v is risk adjusted with respect to the
trading strategy w and the reference strategy u. The adjustment equals the product between
the generalized risk parameter beta and the instantaneous excess return of the trading strategy
w. It is apparent from Eq. (13) that for ε sufficiently small we can always improve the
Sharpe ratio if Jensen’s alpha is different from zero. While theoretically interesting this
observation has, of course, limited practical applicability since only infinitesimal contributions
are considered.
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Remark 1. Note that we recover the standard definitions of alpha and beta when the reference
strategy u = 0, and the numéraire asset can be identified with a locally risk-free bank account,
expressed in terms of some interest rate process r.

In this paper we show how to calculate the optimal instantaneous Sharpe ratio when
the opportunity set is enlarged. In doing so we use elements from Kelly portfolio theory
and emphasize on the non-trivial geometry governing risk adjustments of returns. We stress
that this is a static analysis, carried out for a fixed point in time, and consequently we often
suppress the time dimension to facilitate the reading. For simplicity, we also focus on the case
where the reference strategy corresponds to the market numéraire, i.e. u = 0, and provide
details at a later stage on how to generalize the results derived.

3 Basic Geometry

In this section we give a very brief introduction to geometry, including tensors and tensor
notation. For additional details see for instance Dodson and Poston (1991). The reason for
choosing this path is that we sometimes need to study the geometry from the viewpoint of
different coordinate systems. Consequently, it is beneficial to work with a coordinate free
representation. The tensor notation further offers superior understanding, compared to the
linear algebra matrix notation, in describing how the components transform with respect to
linear transformations of the basis vectors. In order to easily distinguish components from
basis vectors (and tensors) we write the latter ones in bold.

Throughout this paper let U be an N -dimensional vector space over R such that U is
isomorphic to RN . A typical element of U is denoted by w and corresponds to a trading
strategy at a given point in time. Expressed in terms of the standard basis {e1, . . . , eN} this
means that w = w1(t)e1 + · · ·+ wN(t)eN for some vector of components w(t). Similarly, we
let w∗ denote the growth optimal Kelly vector with components w∗(t) in the standard basis.
We also fix the inner product V0(v,w) = 〈v(t), w(t)〉V0(t), representing the random variable
V0|v,w(t), and note that H = (U,V0) is a Hilbert space.

We further let U∗ denote the dual vector space containing all linear forms on U . The
elements of the dual space are referred to as covectors, or 1-forms, and a typical example
is the instantaneous rate of excess return. We define the covector b0(w) = V0(w∗,w) such
that it represent the random variable b0|w(t). Hence, b0(en) corresponds to the n’th term of
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the component vector b0(t) = (b0|1(t), . . . , b0|N(t))′ for the investable assets. The notion of
the dual space is important throughout this work and from linear algebra we know that the
dual space U∗ is itself a vector space of the same dimension as U . Moreover, as U is finite
dimensional the map into its double dual space U∗∗ is a natural isomorphism; whence U∗∗

can be identified with the original vector space. This means that we can also regard w as the
linear form w(b0) = b0(w).

For any vector basis {u1, . . . ,uN} of U , there exists a dual basis {u1, . . . ,uN} for which
U∗ = span(u1, . . . ,uN). We express the canonical dual basis, using the Kronecker delta,
according to

ui(uj) = δij. (15)

One notes that in the special case where the vector basis {u1, . . . ,uN} is orthonormal the
canonical dual basis takes the same form as the vector basis, which consequently allows for
considerable simplifications. In our situation, however, this is not the case. The standard
basis is related to the investable assets, which are assumed to be correlated with each other.
In order to further explain the relationship we apply a linear transformation to the standard
basis. It follows, using Einstein summation for repeated indices, that if ēi = Ai

jej then
ēi = (A−1)j

iej. We verify this statement using the linearity of covectors

ēi(ēj) = (A−1)k
iek(Aj

lel) = Aj
l(A−1)k

iδkl = Aj
l(A−1)l

i = δij, (16)

Similarly, we notice that vector components also transform inversely to the coordinates as
w = wi(t)ei = w̄i(t)ēi = w̄i(t)Ai

jej implies that w̄i(t) = (A−1)j
iwj(t). For a covector, though,

the components transform similar to the vector basis, i.e. with b0 = b0|i(t)e
i = b̄0|i(t)ē

i we
obtain b̄0|i(t) = Ai

jb0|j(t). Furthermore, the asset-asset covariance matrix V0(t) generating
the inner product V0 = V0|i,j(t)e

i ⊗ ej = V̄0|i,j(t)ē
i ⊗ ēj transforms according to V̄0|i,j(t) =

Ai
kAj

lV0|k,l(t).
The framework briefly outlined above is that of tensor analysis. The takeaway is that a

tensor is always independent of the chosen basis but that the components change in such a
way as to reflect the basis used. More formally, we regard a (p, q)-tensor T as an element of
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the space

U ⊗ · · · ⊗ U︸ ︷︷ ︸
p

⊗U∗ ⊗ · · · ⊗ U∗︸ ︷︷ ︸
q

, (17)

such that T maps p covectors (recall that we identify U∗∗ with U) and q vectors to R in a
coordinate free and multilinear way. It is important to understand, however, that in order to
compute the function value in R we must always choose a particular basis and identify the
corresponding components.

T T ∈ (p, q)
b0 U∗ (0,1)
w U (1,0)
V0 U∗ ⊗ U∗ (0,2)
V−10 U ⊗ U (2,0)
P0 U ⊗ U∗ (1,1)

Table 1: Summary of main tensors. Note that other financial quantities, such as the
relative leverage risk k0(w) = V0(w,w)/b0(w), are typically not tensors due to the lack of
multilinearity. For instance, although k0(λw) = λk0(w), we have k0(v+w) 6= k0(v)+k0(w).

In Table 1 we highlight the main tensors used in this paper. With the abstract tensor
notation we observe that the instantaneous rate of excess return covector b0 = V0(w∗) is the
metric dual of the growth optimal Kelly vector. In other words, w∗ ∈ H = (U,V0) is the Riesz
representation of b0 ∈ H∗ = (U∗,V−10 ), where the inner product V−10 = (V −10 (t))ijei ⊗ ej

is generated by the inverse covariance matrix V −10 (t) of the investable assets, such that
‖w∗‖H = ‖b0‖H∗ . Similarly, we can also write w∗ = V−10 (b0), with the interpretation that w∗

is an element of the double dual space U∗∗ ∼= U , such that w∗(e
n) = en(w∗) equals the n’th

component of w∗(t). The (1, 1)-tensor P0 = P i
0|j(t)ei ⊗ ej is a projection operator mapping a

covector and a vector to R. More commonly, though, we regard it as a map from either U
onto U or from U∗ onto U∗. Finally, let us mention that we have chosen to represent other
financial key quantities with the same notation, although they are not tensors. For instance,
we let s0(w) = b0(w)/

√
V0(w,w) denote the instantaneous Sharpe ratio and note that this

quantity is truly speaking not a tensor due to the non-linear scaling s0(λw) = sign(λ)s0(w).
For the remainder of this section we present additional results related to the growth
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optimal Kelly vector, with the purpose both to motivate the use of tensors and to present a
framework suitable for geometric analysis.

3.1 Absence of Arbitrage

In order to highlight the power of tensor analysis we provide an enlightening example of when
it is important to consider vectors rather than simply components for a particular basis.

Recall that in Section 2 we presented the portfolio theory directly in terms of the
components corresponding to the standard basis. However, we did not explicitly specify the
source of randomness driving the evolution of the investable assets. By assuming that these
assets are F-adapted continuous processes we may write

dP0|n(t)

P0|n(t)
= b0|n(t)dt+ Σ0|n,m(t)dWm(t), n ∈ {1, . . . , N}, (18)

for some standard Brownian motionW = (W 1, . . . ,WM )′ and some F-adapted, RN×M -valued,
volatility process Σ0. The components of the investable asset-asset covariance matrix V0(t)
then equals Σ0(t)Σ

′
0(t). It is well known that absence of arbitrage implies the existence of an

F-adapted process θ = (θ1, . . . , θM )′, see for instance Karatzas and Shreve (1999), such that

Σ0|n,m(t)θm(t) = b0|n(t). (19)

We call θ the market price of risk process and notice that in a complete market, where
M = N , this process equals θ(t) = Σ−10 (t)b0(t). Consequently, in a complete market it follows,
from Eq. (11), that we can express the growth optimal Kelly strategy as

w∗ = wi∗(t)ei = θa(t)(Σ−10 (t))a
jej = θa(t)ēa. (20)

Moreover, since {ē1, . . . , ēN} is a basis of U we see that θa(t)ēa naturally describes the market
price of risk vector Θ ∈ U . We summarize the observations below.

Theorem 3.1. In a complete market, where M = N , the market price of risk vector Θ is
identical to the growth optimal Kelly vector w∗. That is, with Θ = θa(t)ēa, the components
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and the basis vectors relate according to

θa(t) = wj∗(t)(Σ0(t))j
a, ēa = (Σ−10 (t))a

jej,

wi∗(t) = θa(t)(Σ−10 (t))a
i, ei = (Σ0(t))i

aēa,

such that
s0(w∗) = ‖w∗‖H = ‖Θ‖H = ‖θ(t)‖RN .

Note further that we can always choose a new orthonormal basis {ě1, . . . , ěN}, through a
standard orthogonal coordinate transformation, such that

Θ = s0(w∗)ě1, ě1 =
w∗
‖w∗‖H

.

Proof. Given that w∗ = Θ we need to show that ‖w∗‖H = s0(w∗) and ‖Θ‖H = ‖θ(t)‖RN .
Direct calculations using Eqs. (7) and (11) yield

s20(w∗) =
b2
0(w∗)

V0(w∗,w∗)
= V0(w∗,w∗) = ‖w∗‖2H.

Furthermore, since the components of w, with respect to the standard basis, satisfy w′∗(t) =

θ′(t)Σ−10 (t) and V0(t) admits the decomposition Σ0(t)Σ
′
0(t) it follows that

‖w∗‖2H = 〈w∗(t), w∗(t)〉V0(t) = w′∗(t)V0(t)w∗(t) = θ′(t)θ(t),

which we recognize as the square of the Euclidean norm in RN .

By taking a geometric approach we identify the growth optimal Kelly vector with the
market price of risk vector in a complete market. The key observation is that in algebra and
analysis the latter vector is typically expressed using components from a basis different from
the standard basis, which muddies the water and hides the fact that the length of the vector
equals its instantaneous Sharpe ratio. With this introduction to Kelly trading we proceed by
investigating how to characterize the growth optimal Kelly vector on subspaces.
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3.2 The Opportunity Set and Projections

So far we have considered the opportunity set to consist of N numéraire based investable
assets. The first observation to be made is that this dimension is local in time since new
assets might be available for investment in the future while other assets might cease to exist
for various reasons. However, for a given point in time, the dimension of the opportunity set
can also vary from investor to investor and below we aim to clarify the geometry governing
such reductions or expansions.

The approach we follow is to consider a subspace U1 ⊆ U . Any vector w ∈ U1 can be
expressed as w = wjv(t)vj for a given basis {v1, . . . ,vN1}, N1 ≤ N , of U1. Hence, the N1

investable assets of the opportunity set U1 are linear combinations of the N investable assets
in U . We can further translate the representation to the standard basis of U , by setting
vj = vijei, such that w = wi(t)ei with wi(t) = wjv(t)vij. Below we show how to characterize
the growth optimal Kelly vector on U1, defined by

w∗[U1] = arg max
w∈U1

µ0(w), (21)

in terms of w∗. However, first we introduce a technical results.

Lemma 3.2. Given a subspace H1 ⊆ H. The orthogonal projection of a vector w ∈ H onto
H1 = (U1,V0) is unique and satisfies

V0(w,P0|U1(x)) = V0(P0|U1(w),x) = V0(P0|U1(w),P0|U1(x)), ∀x ∈ H.

Furthermore, the orthogonal projection admits the representation

P0|U1(w) =
∑
i≥1

V0(w,vi)

V0(vi,vi)
vi,

for any orthogonal sequence {vi}i≥1 spanning U1.

Proof. For details about the proof we refer to Luenberger (1997).

It is worth mentioning that the functional representation of the orthogonal projection is
more complicated when expanded in a non-orthogonal basis; a topic we return to later in
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this paper. With that being said, we now return to the growth optimal Kelly vector and
highlight the financial connection.

Theorem 3.3. For H1 = (U1,V0) let H1 ⊆ H. Then

w∗[U1] = P0|U1(w∗), ‖w∗[U1]‖H = s0(w∗[U1]).

Proof. Let {vi}i≤N1 , N1 = dim(U1), be an orthogonal sequence spanning U1 such that any
vector w in U1 takes the form w = λjvj. It now follows from Eqs. (6) and (11) that

µ0(λ
jvj) = λjV0(w∗,vj)−

1

2
λjλkV0(vj,vk).

Hence, the rate of excess logarithmic return is maximal when

0 =
∂

∂λi
µ0(λ

jvj) = V0(w∗,vi)− λkV0(vi,vk).

Since {vi}i≤N1 is an orthogonal sequence we see that λi = V0(w∗,vi)/V0(vi,vi). The first
part of the proof follows by identifying the terms with those in Lemma 3.2. Having identified
the growth optimal Kelly vector on a subspace as a projection we again apply Lemma 3.2 to
obtain

b0(w∗[U1]) = V0(w∗,P0|U1(w∗)) = V0(P0|U1(w∗),P0|U1(w∗)) = ‖w∗[U1]‖2H,

from which the proof concludes.

A different explanation can be seen from the expression µ0(v) = 1
2
(‖w∗‖2H − ‖w∗ − v‖2H),

which shows that the local maximum is attained at the point with minimal distance to the
growth optimal Kelly vector. Hence, for any subspace, the line from this unique point to w∗

is orthogonal to the subspace and therefore coincides with the orthogonal projection of w∗

onto the subspace.

Remark 2. By setting b0[U
∗
1 ] = V0(w∗[U1]) one notes, from Lemma 3.2, that

b0[U
∗
1 ](v) = V0(P0|U1(w∗),v) = V0(w∗,P0|U1(v)) = b0(v), v ∈ H1 ⊆ H. (22)

The interpretation is that b0[U
∗
1 ] can be expressed in any dual basis spanning U∗1 , while b0
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must be expanded in any dual basis spanning U∗. Similarly, we sometimes write V0[U
∗
1 ] when

to emphasize that the inner product can be expanded using a dual basis spanning U∗1 . While
the components of the expansions change for every chosen basis, it is important to remember
that the mapping to the real numbers do not. Consequently, we often omit the notion of
subspace for ease of readability.

We further see that we can regard the Hilbert space H, corresponding to the investable
assets for a given investor, as a subspace of the Hilbert space H̄ = (Ū ,V0) representing all
the world’s assets. What this means is that when analyzing optimal portfolio allocations,
for a particular investor, we only have to consider the covariance structure of the investable
assets for that investor. This follows as, restricted to a subspace U1, we only need to find
the components of V0 for a given basis (meaning the investable assets) of U1. It is quite
remarkable that we can equate the growth optimal Kelly vector on any subspace with a
projection of the worldwide growth optimal Kelly vector. This feature further implies that a
growth optimal Kelly vector can be expressed as a nested sequence of projections

w∗[UK ] = P0|UK
· · ·P0|U1(w∗), UK ⊂ · · · ⊂ U1. (23)

The financial interpretation of such a nested sequence can best be appreciated from a
simple application of Cauchy-Schwarz inequality; stating that ‖P0|Uk

(w)‖H ≤ ‖w‖H for all
w ∈ H. Consequently ‖w∗[Uk]‖H ≤ ‖w∗[Uk−1]‖H, which implies (see Theorem 3.3) that
s0(w∗[Uk]) ≤ s0(w∗[Uk−1]). Hence, at each time we reduce the dimension of the investable
assets, for instance by replacing some assets by a mutual fund, the maximal instantaneous
Sharpe ratio is reduced.

3.3 Level Sets, Correlations and Reflections

Modern portfolio theory is largely based on the geometric principle that the level sets of the
instantaneous Sharpe ratio are cones. In other words, if we set Cs = {w ∈ RN : s0(w) = s},
then for each w ∈ Cs, and positive scalar λ > 0, we have λw ∈ Cs. Markowitz (1952) and
Tobin (1958) used this property to derive the well-known efficient mean-variance frontier;
characterized by the set of trading strategies for which the Sharpe ratio is maximal. Kelly
(1956) and Latané (1959), however, argued that by leveraging too hard (that is using a too
high λ) the logarithmic excess return, as opposed to the excess return, eventually becomes
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negative. Following, Bermin and Holm (2021b) we illustrate this feature using the concept of
relative leverage/drawdown risk

b0(w) =
1

k0(w)
σ2
0(w), µ0(w) =

(
1

k0(w)
− 1

2

)
σ2
0(w) =

1

2R(k0(w))
σ2
0(w). (24)

Hence, the instantaneous excess return is strictly positive if and only if k0(w) > 0, while the
instantaneous logarithmic excess return is strictly positive if and only if 0 < k0(w) < 2.

In order to visualize the framework geometrically we first claim that, for w ∈ H, the level
sets of σ0(w), µ0(w) and k0(w) are spheres of dimension N − 1, while the level sets of b0(w)

are hyperplanes of dimension N − 1. Furthermore, there exists a sphere of dimension N − 2,
for which all trading strategies are equivalent with respect to the quantities just mentioned.

Proposition 3.4. The various level sets can be characterized by

Level Topology Center Radius

b0(w) = b RN−1 b

s2∗
w∗ −

σ0(w) = σ SN−1 0 σ

µ0(w) = µ SN−1 w∗ s∗

√
1− 2µ

s2∗

k0(w) = k SN−1
1

2
kw∗

1

2
ks∗

b0(w) = b

σ0(w) = σ
SN−2

b

s2∗
w∗ σ

√
1−

(
b

σs∗

)2

where we have set s∗ = s0(w∗) for convenience. Note further that the joint levels sets of
(b0, σ0) imply level sets for (µ0,k0).

Proof. We, unconventionally, express the quantities using the norm on H according to

σ2
0(w) = ‖w‖2H, µ0(w) =

1

2
‖w∗‖2H −

1

2
‖w −w∗‖2H,

k2
0(w) =

4

‖w∗‖2H
‖w − 1

2
k0(w)w∗‖2H.
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We also note from Lemma 3.2 that

w‖ = P0| span(w∗)(w) =
V0(w,w∗)

V0(w∗,w∗)
w∗ =

b0(w)

‖w∗‖2H
w∗,

such that, with w⊥ = w −w‖, we have

‖w⊥‖2H = ‖w −w‖‖2H = σ2
0(w)− b2

0(w)

‖w∗‖2H
.

Finally, we identify the center point and the radius of the expressions. We also recall that
the norm of the growth optimal Kelly vector equals its instantaneous Sharpe ratio as shown
in Theorem 3.3. The proof concludes from the observation that (µ0,k0) can be expressed in
terms of (b0, σ0).

The importance of the growth optimal Kelly vector can be explained from the observation
that the instantaneous excess return is invariant with respect to trading strategies orthogonal
to w∗. That is, with v = v‖ + v⊥, where v‖ and w∗ are collinear while v⊥ and w∗ are
perpendicular, one sees that

b0(v) = V0(w∗,v‖ + v⊥) = V0(w∗,v‖) + V0(w∗,v⊥) = b0(v‖). (25)

However, since the volatility increases with v⊥, through the formula σ2
0(v) = σ2

0(v‖) +σ2
0(v⊥),

it is clear that the instantaneous Sharpe ratio is maximal for trading strategies collinear to w∗.
Hence, as can be seen from Fig. 1, the instantaneous efficient mean-variance frontier (minimal
variance for a fixed excess return) consists of all vectors collinear to the growth optimal
Kelly vector. These vectors can, however, equally be represented by different constraint
optimization problems, such as minimal relative leverage risk for a fixed (logarithmic) excess
return, to give an example.

We proceed by considering the projection of the growth optimal Kelly vector on the
subspace spanned by a single vector v. By the use of Eq. (8) and Lemma 3.2 we define

v̂ =
1

k0(v)
v =

V0(w∗,v)

V0(v,v)
v = P0| span(v)(w∗) = w∗[span(v)]. (26)

Bermin and Holm (2021b) call trading strategies generated in this way for generalized
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θ

θ

Figure 1: This figure shows the vectors v = kv̂ and vr = kv̂r, where the latter is a reflection
of the first through the line spanned by the growth optimal Kelly vector w∗. We also highlight
the level sets of k0 (black), b0 (blue), µ0 (green) and those of σ0 (red).

growth optimal Kelly strategies and show that these strategies have the same relative
drawdown/leverage risk as the growth optimal Kelly strategy. Their proof is a direct
consequence of the simple relationships k0(λv) = λk0(v) and k0(w∗) = 1. Since v̂ is the
orthogonal projection of the growth optimal Kelly vector onto U1 = span(v) the vector w∗− v̂

is further perpendicular to v̂. Consequently, as shown in Fig 1, the angle between the vectors
w∗ and v̂ satisfy cosϕw∗,v̂ = ‖v̂‖H/‖w∗‖H, The financial interpretation of the angle between
vectors is the correlation and through the relationship ρ0(v,w) = cosϕv,w we obtain the
following result.

Theorem 3.5. For H1 = (U1,V0) let v ∈ H1 ⊆ H. Then

ρ0(v,w∗[U1]) =
s0(v)

s0(w∗[U1])
.

Proof. Straightforward calculations, using Lemma 3.2, yield

ρ0(v,w∗[U1]) =
V0(v,P0|U1(w∗))

‖v‖H‖w∗[U1]‖H
=

V0(P0|U1(v),w∗)

‖v‖H‖w∗[U1]‖H
=

b0(P0|U1(v))

σ0(v)‖w∗[U1]‖H
.
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Hence, for v ∈ H1 ⊆ H, the proof concludes by the use of Theorem 3.3.

Since the correlation between any vector and the growth optimal Kelly vector equals the
ratio of their instantaneous Sharpe ratios, we again see that |s0(v)| ≤ s0(w∗[U1]) for any
vector v ∈ U1. Furthermore, the correlation is in fact bounded by the various Sharpe ratios
as shown below.

Corollary 3.6. For H1 = (U1,V0) let v,w ∈ H1 ⊆ H. Then

∣∣∣∣ρ0(v,w)− s0(v)s0(w)

s20(w∗[U1])

∣∣∣∣ ≤
√(

1− s20(v)

s20(w∗[U1])

)(
1− s20(w)

s20(w∗[U1])

)
,

with equality if dim(U1) = 2.

Proof. Define the vectors v⊥ = v−P0| span(w∗[U1])(v) and w⊥ = w−P0| span(w∗[U1])(w). Direct
calculations, using Lemma 3.2, then show that

V0(v⊥,w⊥) = σ0(v)σ0(w) (ρ0(v,w)− ρ0(w∗[U1],v)ρ0(w∗[U1],w)) ,

which yields

ρ0(v⊥,w⊥) =
ρ0(v,w)− ρ0(w∗[U1],v)ρ0(w∗[U1],w)√

1− ρ20(w∗[U1],v)
√

1− ρ20(w∗[U1],w)
.

Since |ρ0(v⊥,w⊥)| ≤ 1 the first part of the proof follows from Theorem 3.5.
We further note that if dim(U1) = 2 then v,w and w∗[U1] lie in the same plane. This

means that the angle ϕv,w = ϕw∗[U1],v + ϕw∗[U1],w, or ϕv,w = 2π − ϕw∗[U1],v − ϕw∗[U1],w, or
ϕv,w = ±(ϕw∗[U1],v−ϕw∗[U1],w), such that ϕv,w ∈ [0, π]. By inspecting each case, we find that

cosϕv,w = cosϕw∗[U1],v cosϕw∗[U1],w ∓ sinϕw∗[U1],v sinϕw∗[U1],w,

where the sign preceding the sine functions is negative for the first two representations of
ϕv,w and positive for the latter two. The proof now follows from Theorem 3.5.

In Fig. 1 we also plot the reflection of the vector v with respect to the growth optimal
Kelly vector. Hence, by setting vr = v‖ − v⊥, such that

vr = 2v‖ − v = 2P0| span(w∗)(v)− v = 2
V0(w∗,v)

V0(w∗,w∗)
w∗ − v, (27)
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straightforward calculations yield

b0(vr) = b0(v), V0(vr,vr) = V0(v,v). (28)

From these expressions it follows that also the instantaneous: excess logarithmic return,
Sharpe ratio and relative drawdown/leverage risk are invariant quantities. The fact that we
can, in general, identify two distinct trading strategies with identical local characteristics
is a result of great importance in order to fully understand the widely used mean-variance
framework. By construction we also note that

V0(vr,w) = V0(wr,v) = 2
V0(w∗,v)V0(w∗,w)

V0(w∗,w∗)
−V0(v,w), (29)

which, together with Theorems 3.3 and 3.5, implies the identity

ρ0(vr,w) = ρ0(wr,v) = 2
s0(v)s0(w)

s20(w∗)
− ρ0(v,w). (30)

Hence, for every pair of correlated trading strategies (v,w) we can always find new pairs
(vr,w) and (v,wr) with modified correlation but with otherwise identical characteristics.
Note also that in the particular case where w = v, we obtain

ρ0(vr,v) = 2ρ20(w∗,v)− 1 = 2 cos2 ϕw∗,v − 1 = cos 2ϕw∗,v, (31)

which confirms that the angle ϕvr,v = 2ϕw∗,v as illustrated in Fig. 1.
We have shown that the only trading strategies which are locally unique, in the sense

mentioned above, are the so-called (fractional) Kelly strategies, w = kw∗, first introduced in
MacLean, Ziemba and Blazenko (1992). For these trading strategies, characterized by having
maximal instantaneous squared Sharpe ratio, one easily verifies that

µ0(kw∗) =
1

2
k(2− k)s20(w∗), σ2

0(kw∗) = k2s20(w∗). (32)

Consequently, a Kelly strategy is efficient if the relative leverage risk k0(kw∗) = k ∈ [0, 1],
since otherwise we can always lower the volatility without reducing the logarithmic excess
return. Finally, we briefly discuss how the geometric framework can further be used to
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visualize trade-offs between risk and return. For instance, from Fig. 1 we deduce how to lower
the relative leverage/drawdown risk of an arbitrary trading strategy, at no expense on the
logarithmic excess return, by employing an efficient Kelly strategy. We illustrate the approach
by calculating the fraction k ∈ [0, 1] such that µ0(kw∗) = µ0(v̂), using geometric principles
only. One sees that the radius of the circle describing the level sets of the logarithmic excess
return can be expressed in the two different ways: sinϕw∗,v̂‖w∗‖H and (1− k)‖w∗‖H. Hence,
with

k = 1− sinϕw∗,v̂ = 1−
√

1− cos2 ϕw∗,v̂ = 1−
√

1− ρ20(w∗, v̂), (33)

the relative leverage/drawdown risk is reduced from k0(v̂) = 1 to k0(kw∗) = k ≤ 1, without
affecting the excess logarithmic return. In much the same way it follows that, for a fixed
logarithmic excess return, the trading strategies with lowest volatility are the Kelly strategies.
This observation is a direct consequence of Proposition 3.4; stating that the level sets of the
volatility are spheres centered at origo.

4 Risk Adjusted Returns

In this section we present a geometric approach to study the concept of risk adjusted returns.
That is we quantify the excess (logarithmic) return an investor can achieve by augmenting
the opportunity set and, at the same time, we provide geometric interpretations of Jensen’s
alpha and the beta parameter. While these quantities are considered fundamental for many
portfolio managers the amount of information they carry is rather limited. In fact, as pointed
out in Eqs. (13) and (14), the only information contained in Jensen’s alpha is the sign;
indicating whether to add a long or short infinitesimal position of an asset to an existing
portfolio. Hence, the knowledge of alpha and beta is, by itself, not enough to determine how
to form a portfolio that maximizes, say, the instantaneous Sharpe ratio or the rate of excess
(logarithmic) return. The reason why alpha and beta fail to be self contained is due to the
easily verifiable scaling properties

α0(λ1w1, λ2w2) = λ1α0(w1,w2), β0(λ1w1, λ2w2) =
λ1
λ2
β0(w1,w2). (34)

In other words, given an arbitrary trading strategy, represented by (w1,w2), we can apply
leverage (λ1w1, λ2w2) to achieve any targeted alpha and beta. Consequently, by only looking
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at the parameters alpha and beta we cannot distinguish, say, diversified portfolios from
leveraged portfolios. Another reason why the risk adjusted excess return measure of Jensen
is of little importance is because it ignores the event of loosing arbitrary large amount of
money due to excessive leverage. We therefore suggest a slightly modified measure, called
the risk adjusted Sharpe ratio, that carries more information.

In order to formulate our approach we first introduce some terminology. Given two
subspaces U1, U2 with trivial intersection, U1 ∩ U2 = {0}, we let U1 ⊕ U2 denote the direct
sum and recall the similar concept for Hilbert spaces

H1 ⊕H2 = (U1,V0[U
∗
1 ])⊕ (U2,V0[U

∗
2 ]) = (U1 ⊕ U2,V0[U

∗
1 ]⊕V0[U

∗
2 ]). (35)

Hence, H = H1 ⊕H2 if U = U1 ⊕ U2 and U1 ⊥ U2. As mentioned in Remark 2 there is no
real conceptual gain in explicitly expressing the space for which the inner product can be
expanded in some basis. Consequently, from here and onward, we simply write V0 ⊕V0

unless there is ambiguity. We also write w∗ when referring to w∗[U ] and U = U1 ⊕ U2. The
following results show the importance of the Hilbert space direct sum decomposition.

Proposition 4.1. Let H = H1 ⊕H2. Then

w∗ = w∗[U1] + w∗[U2],

s20(w∗) = s20(w∗[U1]) + s20(w∗[U2]),

b0(w∗) = b0(w∗[U1]) + b0(w∗[U2]).

Proof. Since H = H1⊕H2 there is a unique decomposition w∗ = w1 +w2, such that wi ∈ Hi.
Because U1 ⊥ U2 we can further identify wi with P0|Ui

(w∗), from which the first result follows
by Theorem 3.3. The second result also follows from Theorem 3.3, since U1 ⊥ U2, while the
third result follows from the dual representation H∗ = H∗1 ⊕H∗2.

Corollary 4.2. Let H = H1 ⊕H2. Then

b0(w∗[Ui]) = s20(w∗[Ui]), µ0(w∗[Ui]) =
1

2
s20(w∗[Ui]), i ∈ {1, 2}.
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Proof. By the use of Lemma 3.2 and Theorem 3.3, it now follows that

b0(w∗[Ui]) = V0(w∗,P0|Ui
(w∗)) = V0(P0|Ui

(w∗),P0|Ui
(w∗)) = s20(w∗[Ui]),

σ2
0(w∗[Ui]) = V0(P0|Ui

(w∗),P0|Ui
(w∗)) = s20(w∗[Ui]),

from which the proof follows.

Hence, for a growth optimal Kelly trader the (logarithmic) excess return related to an
augmentation of the opportunity set is directly linked to the Sharpe ratio. Note further
that the key issue, as explained in Proposition 4.1 and Corollary 4.2, is to find the Hilbert
space direct sums given two arbitrary (and thus not necessarily orthogonal) vector spaces
U1, U2 ⊆ U . Henceforth, we let U⊥2|1 denote the orthogonal subspace to U1 in U , while U⊥1|2
denotes the orthogonal subspace to U2 in U , such that

P0|U⊥
2|1

= 1U −P0|U1 , P0|U⊥
1|2

= 1U −P0|U2 . (36)

This shows that H = H1 ⊕H⊥2|1 = H⊥1|2 ⊕H2, where

H1 ⊕H⊥2|1 = (U1 ⊕ U⊥2|1,V0 ⊕V0), H⊥1|2 ⊕H2 = (U⊥1|2 ⊕ U2,V0 ⊕V0). (37)

The interpretation is that a growth optimal Kelly trader in U1 should add the orthogonal
vector w∗[U

⊥
2|1] to be growth optimal in U , while a growth optimal Kelly trader in U2 should

add the orthogonal vector w∗[U
⊥
1|2]. In order to establish a connection to the alpha and

beta parameters we further show that the instantaneous excess return covectors b0[U
⊥∗
2|1 ]

and b0[U
⊥∗
1|2 ] are related to alpha, while the orthogonal projection operators P0|U⊥

2|1
and

P0|U⊥
1|2

are linked to beta. We also stress that while the primary market might consist
of, say, N numéraire based assets, we generally assume that only some mutual funds are
available for investment. Consequently, dim(U) = dim(U1) + dim(U2) ≤ N . For ease of
readability we choose to present our results in two steps: first we consider the simple case
where dim(U1) = dim(U2) = 1 and thereafter we consider the general case. As always, most
of the results carry over to higher dimensions albeit with some modifications.
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4.1 Kelly Solution in Two Dimensions

Consider a market with only two investable assets such that dim(U) = 2. We stress that each
asset can be thought of as a mutual fund, with positions in a much larger asset universe. Let
further v1,v2 ∈ U be two linearly independent vectors (each corresponding to a particular
trading strategy) and set Ui = span(vi), for i = 1, 2. Then, as U1 ∩ U2 = {0}, we have
U = U1 ⊕ U2. However, since the vectors v1,v2 are typically not orthogonal we cannot
yet form the Hilbert space direct sum. For this reason we also consider the alternative
decompositions U = U1 ⊕ U⊥2|1 and U = U⊥1|2 ⊕ U2. While Corollary 4.2 formally identifies
the risk adjusted quantities of interest we must always choose a particular basis for the
computations. It should come as no surprise that these calculations can be greatly simplified if
we use orthogonal basis vectors but that eventually we want to represent the risk adjustments
using the natural basis vectors (v1,v2). Hence, our first goal is to construct basis vectors
(v1,v2|1) and (v1|2,v2), where v2|1 is some vector spanning U⊥2|1 and similarly for v1|2. Below
we show how to use the projection operators to construct three such sets of basis vectors and
in doing so we derive a geometrical interpretation of alpha and beta.

Given the non-orthogonal natural basis (v1,v2) we recall the canonical dual basis (v1,v2)

as introduced in Eq. (15). By the use of Lemma 3.2 we have

P0|U1 =
V0(v1)

V0(v1,v1)
v1 = β0(·,v1)v1, P0|U2 =

V0(v2)

V0(v2,v2)
v2 = β0(·,v2)v2, (38)

which identifies beta as being linked to the component of a projection tensor. Since the latter
are (1,1)-tensors we can further expand them using the canonical dual basis and from Eq.
(36) we get

P0|U⊥
2|1

=
2∑
i=1

(
vi −P0|U1 (vi)

)
vi = (v2 − β0(v2,v1)v1) v2, (39)

P0|U⊥
1|2

=
2∑
i=1

(
vi −P0|U2 (vi)

)
vi = (v1 − β0(v1,v2)v2) v1. (40)

We can now easily identify orthogonal vectors by setting

v2|1 = P0|U⊥
2|1

(v2) = v2 − β0(v2,v1)v1, v1|2 = P0|U⊥
1|2

(v1) = v1 − β0(v1,v2)v2. (41)
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(a) typical case (b) degenerate case

Figure 2: This figure shows the orthogonal decompositions U = U1⊕U⊥2|1 = U⊥1|2⊕U2 for two
separate cases. The growth optimal Kelly vector w∗ = v̂1 + v̂2|1 = v̂1|2 + v̂2, which implies a
representation w∗ = w1

∗v1 + w2
∗v2 in the non-orthogonal decomposition U = U1 ⊕ U2. We

use the notations: ρ1,2 = ρ0(v1,v2), β12 = β0(v1,v2), β21 = β0(v2,v1) and also highlight the
level sets of k0(w) = k, for k ∈ {1, 2,±∞}.

In Fig. 2 we display the geometry of the orthogonal decompositions U1⊕U⊥2|1 and U⊥1|2⊕U2,
indicating the role of beta as being the components of a projection operator. From the
degenerate case, plot (b), we further notice that, say, v̂2|1 = w∗[U

⊥
2|1] = 0 is not equivalent

to v̂2 = w∗[U2] = 0. Having constructed the two auxiliary coordinate systems (v1,v2|1) and
(v1|2,v2) we proceed by investigating their local properties.

Proposition 4.3. The characteristics of the vectors v2|1 and v1|2 are given by

b0(v2|1) = α0(v2,v1), V0(v2|1) = σ2
0(v2)− β2

0(v2,v1)σ
2
0(v1),

b0(v1|2) = α0(v1,v2), V0(v1|2) = σ2
0(v1)− β2

0(v1,v2)σ
2
0(v2).

Proof. We illustrate the proof for the vector w2|1.
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b0(v2|1) = V0(w∗,v2|1) = V0(w∗,v2)− β0(v2,v1)V0(w∗,v1),

= b0(v2)− β0(v2,v1)b0(v1) = α0(v2,v1),

V0(v2|1,v2|1) = V0(v2,v2) + β2
0(v2,v1)V0(v1,v1)− 2β0(v2,v1)V0(v1,v2),

= V0(v2,v2)− β2
0(v2,v1)V0(v1,v1).

The proof for w1|2 is done analogously and is thus omitted.

It is important to notice that the knowledge of alpha and beta alone is not sufficient to
calculate the corresponding Sharpe ratios s0(v2|1) and s0(v1|2), since these quantities also
depend on the volatility of each trading strategy. We paraphrase this observation as:

Larger alpha with fixed beta is not necessarily better.

Smaller beta with fixed alpha is not necessarily better.

Furthermore, while it is pleasant to be able to interpret the excess return of the vectors v2|1

and v1|2 in terms of alpha, we must remember that the only purpose of these vectors is to
span the spaces U⊥2|1 and U⊥1|2. Hence, any linear scaling of these vectors would serve equally
well since the ultimate goal is to find v̂2|1 and v̂1|2. For this reason we rather prefer to express
any risk adjustment in terms of Sharpe ratios as described below. This approach further
reduces the number of free variables.

Definition 4.4. We call s0(v2|1) the risk adjusted Sharpe ratio of v2 given U1 and define the
corresponding risk adjustment of v1 given U2 analogously.

Theorem 4.5. The growth optimal Kelly vector admits the representation

w∗ =
s0(v1|2)

σ0(v1)
√

1− ρ20(v1,v2)
v1 +

s0(v2|1)

σ0(v2)
√

1− ρ20(v1,v2)
v2,

where the instantaneous risk adjusted Sharpe ratios equal

s0(v2|1) =
s0(v2)− ρ0(v1,v2)s0(v1)√

1− ρ20(v1,v2)
, s0(v1|2) =

s0(v1)− ρ0(v1,v2)s0(v2)√
1− ρ20(v1,v2)

.
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Furthermore, the squared Sharpe ratio of the growth optimal Kelly strategy satisfy

s20(w∗) = s20(v1) + s20(v2|1) = s20(v1|2) + s20(v2),

s20(w∗) =
s20(v1) + s20(v2)− 2ρ0(v1,v2)s0(v1)s0(v2)

1− ρ20(v1,v2)
.

Proof. By applying Proposition 4.1 and the notation in Eq. (26) we have

w∗ = v̂1 + v̂2|1 =
1

k0(v1)
v1 +

1

k0(v2|1)
v2|1,

w∗ = v̂1|2 + v̂2 =
1

k0(v1|2)
v1|2 +

1

k0(v2)
v2.

We now use Eq. (41) to transform these results to the coordinates (v1,v2). Straightforward
calculations yield

w∗ =
1

k0(v1|2)
v1 +

1

k0(v2|1)
v2.

The proof now follows from Propositions 4.1 and 4.3.

The proof above uses the notion of relative leverage risk. Alternatively, one could express
this variable in terms of the beta parameter (with respect to the growth optimal Kelly vector)
as 1/k0(w) = β0(w∗,w). However, since such a replacement brings little additional financial
intuition, we leave this alternative as a curious observation. Instead, we provide two examples
highlighting the behaviour in degenerate cases.

Example 4.6. Suppose that s0(v2) = 0, such that s0(w∗[U2]) = 0. Then, as shown in
Theorem 3.3, ‖w∗[U2]‖H = 0, or equally w∗[U2] = 0. But this does not imply that one should
not invest in v2 when the opportunity set equals U1 ⊕ U2. Rather, Theorem 4.5 gives

w∗ =
s0(v1)

σ0(v1)(1− ρ20(v1,v2))
v1 −

ρ0(v1,v2)s0(v1)

σ0(v2)(1− ρ20(v1,v2))
v2.

Example 4.7. Suppose that v2 = kw∗, such that s20(v2) = s20(w∗). Then, as shown in
Theorem 4.5, s0(v1|2) = 0, or equally s0(v1) = ρ0(v1,v2)s0(v2). But this implies that

w∗ =
s0(v2|1)

σ0(v2)
√

1− ρ20(v1,v2)
v2 =

s0(v2)

σ0(v2)
v2 = w∗[U2].
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Hence, an investor who enlarges his opportunity set from U1 to U1 ⊕ U2 may well trade
in the new asset even if it has zero Sharpe ratio. Moreover, such an investor may also fully
discard his existing trading strategy in favour of only trading the asset in U2 (even though
the initial portfolio has non-zero Sharpe ratio).

v2 1

v1 2

v2

v1

w*

A

B

C

D

π-φ

φ

Figure 3: This figure shows that the orthogonal decompositions U = U1 ⊕ U⊥2|1 = U⊥1|2 ⊕ U2

form a cyclic quadrilateral. The circle, in which the quadrilateral is inscribed, corresponds to
the level set of k0(w) = 1, that is centered at w∗/2 with a radius of AC/2. The quadrilateral
is cyclic because opposite angles sum to π. Furthermore, the diagonals relate to the sides by
Ptolemy’s celebrated formula BD · AC = CD · AB + AD ·BC.

Finally, we take advantage of the 2-dimensional framework and present a pure geometric
approach to identify the maximal Sharpe ratio and implicitly, thereby, the risk adjusted
Sharpe ratios.

Example 4.8. From Fig. 3 and Ptolemy’s formula, we know that

BD · ‖w∗‖H = ‖v̂2|1‖H‖v̂2‖H + ‖v̂1‖H‖v̂1|2‖H,

where BD represents the distance between the vectors v̂1 and v̂2. We divide both sides with
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‖w∗‖2H and identify the ratios on the right hand side with angles according to

BD

‖w∗‖H
= sinϕw∗,v̂1 cosϕw∗,v̂2 + cosϕw∗,v̂1 sinϕw∗,v̂2 = sin(ϕw∗,v̂1 + ϕw∗,v̂2) = sinϕv̂1,v̂2 .

It now follows from the law of cosines that

‖w∗‖2H =
BD2

sin2 ϕv̂1,v̂2

=
‖v̂1‖2H + ‖v̂2‖2H − 2 cosϕv̂1,v̂2‖v̂1‖H‖v̂2‖H

1− cos2 ϕv̂1,v̂2

,

which is the form presented in Theorem 4.5.

4.2 Kelly Solution in Arbitrary Dimensions

In this section we provide the solution of adding one opportunity set to another. The main
difficulty lies in the fact that both opportunity sets consists of correlated assets; both among
themselves but also among each other. In order to understand how the new assets affect the
portfolio allocation we orthogonalize the covariance matrix, seen as a block matrix of the
two sets of assets, in a way much similar to what was done in the previous section where
the two sets only held one asset each. Although computing inverses of block matrices is well
understood; using matrix formalism to solve our problem is, if not impossible, at least very
difficult. We therefore adopt the formalism of geometric algebra and introduce, as before,
three sets of intermingled coordinate systems.

In order to formulate the approach mathematically we consider two subspaces U1 and U2

of dimension N1 and N2, respectively. Each subspace is spanned by some linearly independent
trading strategies and we use the notation Un = span(v1n , . . . ,vNn

n
) to describe them. We

further assume, without loss of generality, that U1 ∩ U2 = {0} and form the direct sum
U = U1 ⊕ U2, such that dim(U) = N1 +N2. For convenience we also introduce the notation

i1 = i, i2 = N1 + i, (42)

such that we can identify the trading strategies in U when needed. Having defined our usage
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of multi-indices, we proceed by expanding the projection tensors, see Eq. (36), according to

P0|U⊥
2|1

=
2∑

n=1

Nn
n∑

in=1n

(
vin −P0|U1(vin)

)
vin =

N2
2∑

i2=12

(
vi2 −P0|U1(vi2)

)
vi2 , (43)

P0|U⊥
1|2

=
2∑

n=1

Nn
n∑

in=1n

(
vin −P0|U2(vin)

)
vin =

N1
1∑

i1=11

(
vi1 −P0|U2(vi1)

)
vi1 , (44)

where the canonical dual basis vectors satisfy vjk(vil) = δjkil . In order to further highlight the
similarities with the 2-dimensional case, we use Einstein summation and write

P0|U1(vi2) = βi2
k1vk1 , P0|U2(vi1) = βi1

k2vk2 , (45)

in terms of some generalized beta parameters. Before we show how to compute the components
of the projections we first introduce some notation.

Definition 4.9. For every subspace H0 = (U0,V0) of H, let {Vi,j
0|U0
} denote the inverse of the

Gram matrix on H0 ⊆ H, such that for any chosen basis {vk}k≤K of U0, with dim(U0) = K,
we have

V0(vi,vk)V
j,k
0|U0

= δji , i, j ∈ {1, . . . , K},

Similarly, we let {ρi,j0|U0
} denote the inverse of the corresponding correlation matrix on H0,

such that

ρi,j0|U0
= σ0(vi)V

i,j
0|U0

σ0(vj), ρ0(vi,vk)ρ
j,k
0|U0

= δji , i, j ∈ {1, . . . , K}.

Lemma 4.10. Let H0 = (U0,V0) be an arbitrary K-dimensional subspace of H and let
{vk}k≤K be a basis of U0. Then, the projection

P0|U0(w) = V0(w,vj)V
j,k
0|U0

vk,

of w ∈ H onto H0 ⊆ H is orthogonal.
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Proof. We first show that P0|U0 is indeed a projection.

P0|U0(P0|U0(w)) = V0(w,vj)V
j,k
0|U0

P0|U0(vk) = V0(w,vj)V
j,k
0|U0

V0(vk,va)V
a,b
0|U0

vb,

= V0(w,vj)V
j,k
0|U0

δbkvb = V0(w,vj)V
j,k
0|U0

vk = P0|U0(w).

Next, we show that the projection is orthogonal

V0(P0|U0(w),P0|U0(x)) = V0(w,vj)V
j,k
0|U0

V0(x,va)V
a,b
0|U0

V0(vk,vb),

= V0(w,vj)V
j,k
0|U0

V0(x,va)δ
a
k ,

= V0(w,vj)V
j,k
0|U0

V0(x,vk) = V0(P0|U0(w),x).

Hence, P0|U0(w) ⊥ x−P0|U0(x) which concludes the proof.

We stress that the above result generalizes Lemma 3.2 by allowing the basis vectors to be
non-orthogonal. Hence, rather than working with a non-observable abstract vector basis, we
can directly consider the investable assets. Having identified the generalized beta parameters
we now construct the vectors

vi2|1 = P0|U⊥
2|1

(vi2) = vi2 − βi2k1vk1 , βi2
k1 = V0(vi2 ,vj1)V

j1,k1
0|U1

, (46)

vi1|2 = P0|U⊥
1|2

(vi1) = vi1 − βi1k2vk2 , βi1
k2 = V0(vi1 ,vj2)V

j2,k2
0|U2

, (47)

such that U1 ⊥ U⊥2|1 = span(v12|1, . . . ,vN2
2 |1) and U2 ⊥ U⊥1|2 = span(v11|2, . . . ,vN1

1 |2). The
local properties of these orthogonal vectors are summarized below.

Proposition 4.11. The characteristics of the vectors {vi2|1} and {vi1|2} are summarized by
their instantaneous Sharpe ratios

s0(vi2|1) =
s0(vi2)− ρ0(vi2 ,vj1)ρ

j1,k1
0|U1

s0(vk1)√
1− ρ0(vi2 ,vj1)ρ

j1,k1
0|U1

ρ0(vk1 ,vi2)
,

s0(vi1|2) =
s0(vi1)− ρ0(vi1 ,vj2)ρ

j2,k2
0|U2

s0(vk2)√
1− ρ0(vi1 ,vj2)ρ

j2,k2
0|U2

ρ0(vk2 ,vi1)
,
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and their instantaneous volatilities

σ0(vi2|1) = σ0(vi2)
√

1− ρ0(vi2 ,vj1)ρ
j1,k1
0|U1

ρ0(vk1 ,vi2),

σ0(vi1|2) = σ0(vi1)
√

1− ρ0(vi1 ,vj2)ρ
j2,k2
0|U2

ρ0(vk2 ,vi1).

Furthermore, the instantaneous correlation between the vectors, in each basis, equal

ρ0(vi2|1,vj2|1) =
ρ0(vi2 ,vj2)− ρ0(vi2 ,vj1)ρ

j1,k1
0|U1

ρ0(vk1 ,vj2)√
1− ρ0(vi2 ,vj1)ρ

j1,k1
0|U1

ρ0(vk1 ,vi2)
√

1− ρ0(vj2 ,vj1)ρ
j1,k1
0|U1

ρ0(vk1 ,vj2)
,

ρ0(vi1|2,vj1|2) =
ρ0(vi1 ,vj1)− ρ0(vi1 ,vj2)ρ

j2,k2
0|U2

ρ0(vk2 ,vj1)√
1− ρ0(vi1 ,vj2)ρ

j2,k2
0|U2

ρ0(vk2 ,vi1)
√

1− ρ0(vj1 ,vj2)ρ
j2,k2
0|U2

ρ0(vk2 ,vj1)
.

Proof. We only show how to compute the terms for vi2|1 since vi1|2 is treated similarly. First
note that

βi2
k1V0(vk1 ,vl1) = V0(vi2 ,vj1)V

j1,k1
0|U1

V0(vk1 ,vl1) = V0(vi2 ,vj1)δ
j1
l1

= V0(vi2 ,vl1).

We therefore obtain

V0(vi2|1,vj2|1) = V0(vi2 − βi2k1vk1 ,vj2 − βj2 l1vl1),

= V0(vi2 ,vj2)− βi2k1V0(vk1 ,vj2)− βj2 l1V0(vl1 ,vi2) + βj2
l1βi2

k1V0(vk1 ,vl1),

= V0(vi2 ,vj2)− βi2k1V0(vk1 ,vj2),

= V0(vi2 ,vj2)−V0(vi2 ,vj1)V
j1,k1
0|U1

V0(vk1 ,vj2).

We also calculate the generalized alpha representation

b0(vi2|1) = b0(vi2)− βi2k1b0(vk1) = b0(vi2)−V0(vi2 ,vj1)V
j1,k1
0|U1

b0(vk1).

The proof concludes by replacing V0|U1 by ρ0|U1 , as described in Definition 4.9.

It is of course a matter of taste which financial quantities to use when describing the
local characteristics and here we deviate from Proposition 4.3 by focusing on risk adjusted
Sharpe ratios, correlations and volatilities. The main reason for choosing these quantities is
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that the magnitude of both the Sharpe ratio and the correlation do not depend on leverage.
The drawback is that neither quantity is a tensor, which means that sometimes it is easier to
work with (b0,V0). For those who ask for a geometric interpretation of the risk adjusted
volatility we claim that

cos2 ϕw,P0|Un (w) = ρ20(w,P0|Un(w)) = ρ0(w,vjn)ρjn,kn0|Un
ρ0(vkn ,w), n ∈ {1, 2}. (48)

The verification is left to the reader and instead we refer to Fig. 2 for a visualization in the
2-dimensional case. We now present the multi-dimensional extension of Theorem 4.5.

Theorem 4.12. The growth optimal Kelly vector admits the representation

w∗ = s0(vi1|2)ρ
i1,j1
0|U⊥

1|2
σ−10 (vj1|2)vj1 + s0(vi2|1)ρ

i2,j2
0|U⊥

2|1
σ−10 (vj2|1)vj2 .

Furthermore, the squared Sharpe ratio of the growth optimal Kelly strategy satisfy

s20(w∗) = s20(w∗[U1]) + s20(w∗[U
⊥
2|1]) = s0(vi1)ρ

i1,j1
0|U1

s0(vj1) + s0(vi2|1)ρ
i2,j2
0|U⊥

2|1
s0(vj2|1),

s20(w∗) = s20(w∗[U
⊥
1|2]) + s20(w∗[U2]) = s0(vi1|2)ρ

i2,j2
0|U⊥

1|2
s0(vj1|2) + s0(vi2)ρ

i2,j2
0|U2

s0(vj2).

Proof. From Theorem 3.3 and Proposition 4.1 we have

w∗ = P0|U1(w∗) + P0|U⊥
2|1

(w∗) = P0|U⊥
1|2

(w∗) + P0|U2(w∗).

Consequently, Lemma 4.10 gives us the equivalent expressions

w∗ = V0(w∗,vi1)V
i1,j1
0|U1

vj1 + V0(w∗,vi2|1)V
i2,j2
0|U⊥

2|1
vj2|1,

w∗ = V0(w∗,vi1|2)V
i1,j1
0|U⊥

1|2
vj1|2 + V0(w∗,vi2)V

i2,j2
0|U2

vj2 ,

such that straightforward calculations yield

‖w∗‖2H = V0(w∗,vi1)V
i1,j1
0|U1

V0(w∗,vj1) + V0(w∗,vi2|1)V
i2,j2
0|U⊥

2|1
V0(w∗,vj2|1),

‖w∗‖2H = V0(w∗,vi1|2)V
i1,j1
0|U⊥

1|2
V0(w∗,vj1|2) + V0(w∗,vi2)V

i2,j2
0|U2

V0(w∗,vj2).

33



Next, we use Eq. (46) to represent w∗ in terms of the basis vectors {vi1} and {vi2}. Similar
to the proof of Theorem 4.5 we pick terms from each of the two representations to arrive at

w∗ = V0(w∗,vi1|2)V
i1,j1
0|U⊥

1|2
vj1 + V0(w∗,vi2|1)V

i2,j2
0|U⊥

2|1
vj2 .

Finally, we use Definition 4.9 to express the results in terms of correlations rather than
covariances.

In order to verify that the above formula collapses to Theorem 4.5 when N1 = N2 = 1,
we first notice that in this case w∗ = k−10 (v11|2)v11 + k−10 (v12|1)v12 . The correspondence then
follows from converting the index references for each subspace U1, U2 to index references
in U , as explained in Eq. (42). We continue with an example highlighting the benefits of
diversification seen in higher dimensions. Loosely speaking we can think of the example
as adding an asset to a trading strategy in, say S&P500, versus adding the asset to the
opportunity set of the index.

Example 4.13. Let N1 > 1 and N2 = 1. In this example we study the difference in trading
the assets {v11 , . . . ,vN1

1
,v12} versus trading only in {w∗[U1],v12}. For sake of simplicity we

introduce a new orthogonal basis {ěi1} on U1 = span(v11 , . . . ,vN1
1
), such that

ě11 =
w∗[U1]

‖w∗[U1]‖H
.

The inverse correlation matrix corresponding to the new Gram matrix on U1 then takes
the form ρ̌j1,k10|U1

= δj1,k1 . Moreover, since s0(ěi1) = s0(w∗[U1]), if i = 1, and zero otherwise,
Proposition 4.11 yields

s20(w∗[U
⊥
2|1]) = s20(v12|1) =

(s0(v12)− ρ0(v12 , ě11)s0(ě11))
2

1−
∑N1

i=1 ρ
2
0(v12 , ěi1)

.

We now compare this result with a growth optimal Kelly strategy on Ǔ = Ǔ1 ⊕ U2, where
Ǔ1 = span(w∗[U1]) = span(ě11). Consequently, we have s0(w∗[Ǔ

⊥
2|1]) = s0(w∗[U

⊥
2|1])|N1=1 and

from Theorem 4.12 we calculate

s20(w∗[U ])− s20(w∗[Ǔ ])

(s0(v12)− ρ0(v12 ,w∗[U1])s0(w∗[U1]))
2 =

1

1−
∑N1

i=1 ρ
2
0(v12 , ěi1)

− 1

1− ρ20(v12 , ě11)
≥ 0,
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with equality if and only if ρ0(v12 , ěi1) = 0, for 21 ≤ i1 ≤ N1
1 . In general, though, diversifi-

cation has a positive effect on the maximal Sharpe ratio and thereby on the (logarithmic)
excess return, for any Kelly trader.

Without going into details we mention that the previous example can easily be generalized
to the situation where both N1, N2 > 1. In this case one finds that

s20(w∗[U ]) = s20(w∗[Ũ ]), Ũ = span(w∗[U1])⊕ span(w∗[U2]), (49)

if and only if w∗[U1] ⊥ ě22 , . . . , ěN2
2
and w∗[U2] ⊥ ě21 , . . . , ěN1

1
, where {ěik}i≥1 denotes an

orthogonal basis in Uk, k ∈ {1, 2}, such that ě1k = w∗[Uk]/‖w∗[Uk]‖H.
We conclude this section by noting that Jensen’s alpha, as a risk adjusted return, has

a number of shortcomings. First, it does not specify the risk metric under which we can
quantify excess return for a given level of risk. Second, it does not answer the question why
its particular trading strategy is superior, or even preferable, to other trading strategies, and
third, it does not readily generalize to higher dimensions since the diversification effect is not
taken into account. In contrast, we argue that the Kelly approach, in combination with the
risk adjusted Sharpe ratio, brings clarity to the picture and in the next section we provide
further evidence supporting this claim.

5 Relative Value Trading

In this section we investigate the connection between relative value trading and option pricing
as highlighted in Bermin and Holm (2021a). As shown in section 3.3, for a fixed level of
logarithmic excess return, it is always favourable to use an efficient Kelly strategy; both
in terms of relative leverage/drawdown risk and in terms of volatility. These properties
follow from the fact that a Kelly strategy, by design, has maximal instantaneous Sharpe ratio
and that it is never optimal to leverage more than the growth optimal Kelly strategy. We
therefore choose to study the transformation of one efficient Kelly strategy to another as we
enlarge the opportunity set. In other words we start with a trading strategy w1 = k1w∗[U1],
k1 ∈ [0, 1], and investigate the impact of extending the asset universe to U = U1 ⊕ U2, when
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the new Kelly strategy w = kw∗ is used. From Eq. (32) we then have

µ0(w1) =
1

2
k1(2− k1)s20(w∗[U1]), µ0(w) =

1

2
k(2− k)s20(w∗),

σ2
0(w1) = k21s

2
0(w∗[U1]), σ2

0(w) = k2s20(w∗),

k0(w1) = k1, k0(w) = k.

Hence, for a fixed relative leverage risk, k = k1, the logarithmic excess return increases as

µ0(w)− µ0(w1) =
1

2
k1(2− k1)

(
s20(w∗)− s20(w∗[U1])

)
≥ 0. (50)

If, instead, we keep the volatility fixed by setting k = k1s0(w∗[U1])/s0(w∗), then

µ0(w)− µ0(w1) = k1s0(w∗[U1]) (s0(w∗)− s0(w∗[U1])) ≥ 0. (51)

Conversely, for a fixed logarithmic excess return we find that

k = 1±

√
1− k1(2− k1)

s20(w∗[U1])

s20(w∗)
. (52)

By choosing the efficient strategy with lowest variance (that is the one for which k ∈ [0, 1])
we obtain after some algebraic manipulations

k0(w)− k0(w1)

1− k1
= 1−

√
1 +

k1(2− k1)
(1− k1)2

(s20(w∗)− s20(w∗[U1]))

s20(w∗)
≤ 0, (53)

σ0(w)− σ0(w1)

s0(w∗)− k1s0(w∗[U1])
= 1−

√
1 + 2k1

s0(w∗[U1])(s0(w∗)− s0(w∗[U1]))

(s0(w∗)− k1s0(w∗[U1]))2
≤ 0. (54)

The conclusion to be drawn is that when restricted to trading strategies with maximal
instantaneous Sharpe ratio it is almost always beneficial to enlarge the opportunity set. By
doing so we can either increase the logarithmic excess return for a given relative leverage risk
(or volatility) level or reduce the relative leverage risk (or volatility) for a given logarithmic
excess return level. The only time when no value can be added, relative the initial portfolio,
is when s0(w∗) = s0(w∗[U1]). Here, the direct sum representation degenerates, see Fig. 2,
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and below we provide a number of equivalent conditions for when it happens.

Proposition 5.1. Let H = (U1 ⊕ U⊥2|1,V0 ⊕V0). The following conditions are equivalent

w∗ = w∗[U1], w∗[U
⊥
2|1] = 0,

b0(w∗) = b0(w∗[U1]), b0(w∗[U
⊥
2|1]) = 0,

s0(w∗) = s0(w∗[U1]), s0(w∗[U
⊥
2|1]) = 0,

and

b0(w) = b0(P0|U1(w)), ∀w ∈ H,

s0(w) = ρ0(w,w∗[U1])s0(w∗[U1]), ∀w ∈ H.

Proof. Since w∗ = w∗[U1] + w∗[U
⊥
2|1], b0(w∗) = b0(w∗[U1]) + b0(w∗[U

⊥
2|1]), and s20(w∗) =

s20(w∗[U1]) + s20(w∗[U
⊥
2|1]) the first set of conditions are trivially equivalent. Next, we prove

that
s20(w∗[U

⊥
2|1]) = 0⇔ b0(w) = b0(P0|U1(w)), ∀w ∈ H.

We first note, since the projection operator P0|U⊥
2|1

is orthogonal, that

‖w∗[U⊥2|1‖2H = V0(P0|U⊥
2|1

(w∗),P0|U⊥
2|1

(w∗)) = V0(w∗,P0|U⊥
2|1

(w∗)) = b0(P0|U⊥
2|1

(w∗)).

Hence, s20(w∗[U
⊥
2|1]) = ‖w∗[U⊥2|1‖2H = 0 if and only if the covector b0 ◦P0|U⊥

2|1
= 0. But this is

equivalent to b0(w) = b0(P0|U1(w)), for all w ∈ H, since

b0 ◦P0|U⊥
2|1

(w) = b0(P0|U⊥
2|1

(w)) = b0(w −P0|U1(w)) = b0(w)− b0(P0|U1(w)),

which proves the statement. Finally, we notice that

b0(w) = b0(P0|U1(w)) = V0(w∗,P0|U1(w)) = V0(P0|U1(w∗),w),

is equivalent to
s0(w) = ρ0(P0|U1(w∗),w)‖P0|U1(w∗)‖H,

from which the proof concludes by Theorem 3.3.

37



Below we explain how the concept s0(w∗) = s0(w∗[U1]) can be applied to the pricing of
derivatives. We call the pricing rule No Added Relative Value (NARV, for short), with the
meaning that the price of an asset is set such that there is no added value, relative to an
existing Kelly portfolio, in trading the asset.

5.1 Derivative Pricing

In this section we explain how to price a derivative on one or several assets in a space U1.
Throughout this section, we let vπ denote a trading strategy that only takes positions in
the derivative. As explained in the previous section a Kelly trader with opportunity set U1

can add value to his portfolio by extending the opportunity set if U1 ∩ span(vπ) = {0} and
s0(w∗[U1 ⊕ span(vπ)]) 6= s0(w∗[U1]). Below, we analyze the meaning of these two conditions
and highlight the connection with derivative pricing by means of no-arbitrage.

First, we observe that if vπ ∈ U1 then U1 ∩ span(vπ) 6= {0}, with the interpretation that
U1 is instantaneously a complete market for valuing the derivative. From Theorem 3.5 we
then have

s0(vπ) = ρ0(vπ,w∗[U1])s0(w∗[U1]). (55)

Note that when the derivative is written on one asset only, such that vπ = λv11 , a repeated
use of Theorem 3.5 verifies the well known expression s0(vπ) = ±s0(v11), with the sign
depending on whether we are, for instance, considering a call or a put option. If we further
require Eq. (55) to hold for each fixed point in time until the expiry of the derivative, the
corresponding price is uniquely defined once we specify the terminal payoff of the derivative.
We identify the price as the no-arbitrage price of Merton (1973), allowing for a synthetic
replication of the terminal payoff by dynamically trading in the underlying assets.

Next, let us assume that U1∩ span(vπ) = {0}, such that vπ /∈ U1. In this case we say that
U1 is instantaneously an incomplete market with respect to the derivative. From Proposition
5.1 it then follows that the No Added Relative Value (NARV) price is characterized by

s0(w∗[U1 ⊕ span(vπ)]) = s0(w∗[U1])⇔ s0(vπ) = ρ0(vπ,w∗[U1])s0(w∗[U1]). (56)

Hence, the local characteristics of the NARV price are identical to those of the no-arbitrage
price in a complete market.
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In order to further explain the properties of NARV pricing, we let vπ ∈ U1⊕U2, for some set
U2. The interpretation is that U1⊕U2 is instantaneously a complete market or equally that the
instantaneously incomplete market U1 has been completed by adding the opportunity set U2.
The unique price of the derivative then satisfies s0(vπ) = ρ0(vπ,w∗[U1 ⊕ U2])s0(w∗[U1 ⊕ U2]),
as shown in Theorem 3.5. Consequently, the market completion adds no value, relative U1, if
w∗[U1 ⊕ U2] = w∗[U1]. But, as shown in Proposition 5.1, this is equivalent to

s0(w) = ρ0(w,w∗[U1])s0(w∗[U1]), ∀w ∈ U1 ⊕ U2. (57)

Hence, in this case, the functional form of the local characteristics is similar for the derivative
w = vπ and for the assets w ∈ U2. In order to explain the significance of this observation
let us consider a market exhibiting stochastic volatility. We assume that U1 consists of only
one asset and that we want to value, say, a call option with strike K1. Moreover, we further
assume that the price of the derivative (represented by vπ1) is uniquely defined once we
augment the opportunity set with another call option (represented by vπ2) with, say, strike
K2. Then it is reasonable to claim, since we a priori do not know the price of either derivative,
that it should not matter in which order we complete the market and this is exactly what
NARV pricing achieves.

Another way to characterize the NARV prices is by recalling Theorem 3.1, where it was
proved that in a complete market the market price of risk vector is identical to the growth
optimal Kelly vector. Consequently, if w∗[U1 ⊕ U2] = w∗[U1], Proposition 5.1 alternatively
states that the NARV prices can be computed using a market price of risk process satisfying

Θ[U1 ⊕ U2] = w∗[U1 ⊕ U2] = w∗[U1]⇒ Θ[U⊥2|1] = 0, (58)

for every fixed point in time. In the finance literature, the probability measure associated
with such a market price of risk process is called the minimal martingale measure and was first
introduced in Föllmer and Schweizer (1991). While the connection between Kelly trading and
derivative pricing has been derived in Bermin and Holm (2021a), we believe our geometrical
approach provides additional insights; notably by realizing that the market price of risk vector
and the growth optimal Kelly vector are identical in a complete market.

Finally, we stress that should the market price of a derivative not equal the minimal
martingale measure price, a Kelly trader can always add value to his portfolio by enlarging
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the opportunity set with the derivative, as explained in the first part of this section.

6 Comment on Risk Relativity

In this section we briefly outline how our framework can be extended to cover the situation
where risk is measured relative an asset different from the numéraire. As an illustrative
example we may consider a fund manager who benchmarks his performance against, say,
bitcoin but reports his earnings in dollars. This leads us to develop a Kelly-like theory
for hyperplanes, which are not necessarily going through origo and, hence, are not vector
spaces but merely affine spaces. We proceed as follows: given that U = span(v1, . . . ,vN ), we
consider an K-dimensional hyperplane A, with K ≤ N , defined such that for any point w ∈ A
we can find coefficients {λi}1≤i≤K satisfying w = v0 +λi(vi−v0), for some arbitrary point v0.
With u denoting the reference vector two situations can now occur. Either u belongs to A or
the reference vector lies outside of the hyperplane. In this paper we only consider the first
case, which allows us to choose v0 = u. It follows that we can can translate the hyperplane
to origo by subtracting the reference vector and form the vector space Au = A− u. We then
define the Hilbert space Hu = (Au,Vu), where the inner product in Au relates to that in U
according to

Vu(vu,wu) = V0(v − u,w − u), vu,wu ∈ Au. (59)

One notes that the zero vector is the origo in each vector space U and Au, respectively, but
when expressed in terms of U the origo of Au equals the point associated with the reference
vector. Following the notation in Bermin and Holm (2021b) we then define, in accordance
with Proposition 2.1, the financial quantities

bu(w) = V0(w∗ − u,w − u), σ2
u(w) = V0(w − u,w − u), (60)

ρu(v,w) =
V0(v − u,w − u)√

V0(v − u,v − u)V0(w − u,w − u)
, (61)

where, as usual, w∗ = w∗[U ]. We also set µu(w) = bu(w)− 1
2
σ2
u(w), su(w) = bu(w)/σu(w),

and ku(w) = σu(w)/su(w). Note that while these definitions are natural from a financial
point of view they come with the drawback that the tensor properties of b0 and V0 are lost.
One way to overcome this issue would be to define bu(wu) = V0(w∗ − u,wu), similar to
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Vu in Eq. (59). Hence, whichever notation that is most convenient to use might vary from
application to application. With that being said, we continue by defining the growth optimal
Kelly vector on the hyperplane A = u + Au according to

w∗[A] = arg max
w∈A

µu(w) = u + arg max
wu∈Au

µu(u + wu), (62)

such that w∗[A] = w∗ if Au and U share the same point space. Similar to affine subspaces,
we then define subspaces of the hyperplane A as being generated by subspaces of the
corresponding vector space Au. Moreover, for any subspace Au1 ⊆ Au we let Pu|Au1 denote
the orthogonal projection of Au onto Au1, see Lemma 4.10 for related details. This allows us
to generalize Theorems 3.3 and 3.5 as below.

Corollary 6.1. For Hu1 = (Au1,Vu) ⊆ Hu, let A1 = u + Au1 be the associated subspace of
A. Then

w∗[A1]− u = Pu|Au1(w∗ − u), ‖w∗[A1]− u‖Hu = su(w∗[A1]).

Proof. Straightforward calculations, setting w∗u = w∗ − u and assuming wu ∈ Au1, yield

µu(u + wu) =Vu(w∗u,wu)− 1

2
Vu(wu,wu),

=Vu(Pu|Au1(w∗u),wu)− 1

2
Vu(wu,wu),

=
1

2
‖Pu|Au1(w∗u)‖2Hu

− 1

2
‖wu −Pu|Au1(w∗u)‖2Hu

.

Hence, arg maxwu∈Au1
µu(u + wu) = Pu|Au1(w∗u), from which the first part of the proof

follows. The second part is a direct consequence of Pu|Au1 being an orthogonal projection.

Corollary 6.2. For Hu1 = (Au1,Vu) ⊆ Hu, let A1 = u + Au1 be the associated subspace of
A. Then, for v ∈ A1, we have

ρu(v,w∗[A1]) =
su(v)

su(w∗[A1])
.

Proof. The proof follows similarly to that of Theorem 3.5 and is thus omitted.

In fact, all the results derived throughout this paper are presented in such a way that they
can be modified by simply changing the reference vector. For instance, simple calculations,
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Figure 4: This figure shows the orthogonal decompositions of the translated vector space
Au (black) and those of the initial vector space U (grey). The growth optimal Kelly vector
is invariant with respect to the translation vector u, that is w∗ = u + wu∗, which implies
that Kelly strategies in Au correspond to the trading strategies wu = k(w∗ − u). The
growth optimal Kelly vector wu∗ = v̂u1 + v̂u2|1 = v̂u1|2 + v̂u2, further admits a representation
wu∗ = w1

u∗vu1 + w2
u∗vu2 in the non-orthogonal decomposition Au = Au1 ⊕ Au2. We use the

notations: ρ1,2 = ρu(v1,v2), β12 = βu(v1,v2), β21 = βu(v2,v1) and also highlight the level
sets of ku(w) = k, for k ∈ {1, 2,±∞}.
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assuming dim(Au) = 2, yield

s2u(w∗) = s2u(v1) + s2u(v2|1) = s2u(v1|2) + s2u(v2), (63)

where the risk adjusted Sharpe ratios equals

su(v2|1) =
su(v2)− ρu(v1,v2)su(v1)√

1− ρ2u(v1,v2)
, su(v1|2) =

su(v1)− ρu(v1,v2)su(v2)√
1− ρ2u(v1,v2)

. (64)

We visualise the role of what is considered to be the risk-free asset in Fig. 4. Although
the lines (Au1, Au2), spanned by u + λ1(v1 − u) and u + λ2(v2 − u), respectively, are very
different from the lines (U1, U2), spanned by λ1v1 and λ2v2, the direct sums Au1 ⊕ Au2 and
U1 ⊕ U2 have the same point space. Consequently, w∗[A] = w∗ and the trading strategies
with maximal Sharpe ratio (i.e. the Kelly strategies) are now of the form w = u + k(w∗−u).
For such trading strategies one easily verifies that

µu(w) =
1

2
k(2− k)s2u(w∗), σ2

u(w) = k2s2u(w∗), ku(w) = k. (65)

Hence, we recover the well known Kelly expressions. For higher dimensions Eq. (63) must,
however, be modified as described in Theorem 4.12. We leave the details to the reader.
Finally, we stress that the restricted growth optimal Kelly vectors w∗[A1], A1 ⊆ A, can
change considerably with respect to the chosen reference vector u, even though w∗[A] is
invariant.

7 Conclusions

In this paper we present a geometric approach to portfolio theory, with the aim to explain
and clarify the geometrical principles behind risk adjusted returns; in particular Jensen’s
alpha. We find that while the alpha/beta approach has severe limitations (especially in
higher dimensions), only minor conceptual modifications are needed to complete the picture.
However, these minor modifications (e.g. using risk adjusted Sharpe ratios rather than risk
adjusted returns) can only be appreciated once a full geometric approach to portfolio theory
is developed. In particular, we show how to create trading strategies on the efficient (local)

43



frontier, in the sense of Markowitz (1952) and Tobin (1958), having maximal instantaneous
Sharpe ratio. The approach taken is strongly linked to the Kelly criterion and the growth
optimal Kelly vector.

Additionally, we derive a number of intermediate results that are of interest by themselves.
For instance, we show that in a complete market the so called market price of risk vector is
identical to the growth optimal Kelly vector, albeit expressed in coordinates of a different
basis. We further show that the instantaneous correlation between an arbitrary trading
strategy and its corresponding growth optimal Kelly strategy can be expressed as the ratio
between their Sharpe ratios. By analyzing the level sets of various financial quantities we also
find that points in the mean-variance space cannot, in general, be associated with a unique
trading strategy. Only the points on the efficient frontier (that is those with maximal Sharpe
ratio) can uniquely be identified. For such trading strategies, collinear to the growth optimal
Kelly vector, we formalise the notion of relative value trading that is implicit in Platen (2006)
and Bermin and Holm (2021a). We then apply geometric principles to investigate derivative
pricing and introduce the concept of pricing by means on No Added Relative Value (NARV,
for short). We say that this concept applies when the risk adjusted Sharpe ratio of the
derivative equals zero. Using simple geometric arguments we show that NARV pricing is
identical to no-arbitrage pricing with the so called minimal martingale measure of Föllmer
and Schweizer (1991); a result first derived in Bermin and Holm (2021a), albeit with much
different methods. We further show that should the market price of a derivative not equal
the minimal martingale measure price, a Kelly trader can always add value to his portfolio
by enlarging the opportunity set with the derivative.
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